Abstract

Needle insertion of thin tissues is a crucial procedure in invasive biomedical operations. Reducing the interaction force during needle insertion could yield benefits such as avoiding tissue damage caused by overstretch and improving the insertion accuracy by decreasing the target point deformation. Vibration-assisted needle insertion possesses the advantages of low injury risk, unrestricted by incision and balanced insertion controllability and efficiency. However, the mechanism of vibration assistance for thin tissue insertion is unclear, and how to select appropriate insertion parameters to reduce the interaction force effectively requires further investigation. This paper focuses on the vibration-assisted needle insertion method of thin tissues to reduce the interaction force. A comprehensive force model is established based on the overall consideration of the coupled, time-varying and phased needle-tissue mechanical interaction behaviors and the geometrical characteristic of tissue. The influence of vibration is analyzed and modeled based on the vibration-enhanced stress concentration and the time-averaged effect of friction. A vibration-assisted needle insertion experimental setup is established, and thin tissue insertion tests are carried out to investigate the influences of insertion parameters on different kinds of interaction forces and validate the theoretical model. The results show that the fracture force and friction force increase when the insertion velocity is raised. The fracture force monotonically decreases with both the vibration frequency and amplitude, while the friction force reduces with a smaller velocity ratio. The study provides valuable insights for reducing the interaction force of thin tissue insertion.

References

1.
Lee
,
K. J.
,
Park
,
S. H.
,
Jo
,
D. H.
,
Cho
,
C. S.
,
Jang
,
H. Y.
,
Yi
,
J.
,
Kang
,
M.
,
Kim
,
J.
,
Jung
,
H. Y.
, et al.,
2022
, “
Self-Plugging Microneedle (SPM) for Intravitreal Drug Delivery
,”
Adv. Healthcare Mater.
,
11
(
12
), p.
2102599
.10.1002/adhm.202102599
2.
Qi
,
B.
,
Yu
,
Z.
,
Varnamkhasti
,
Z. K.
,
Zhou
,
Y.
, and
Sheng
,
J.
,
2021
, “
Toward a Telescopic Steerable Robotic Needle for Minimally Invasive Tissue Biopsy
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
1989
1996
.10.1109/LRA.2021.3061400
3.
Tucan
,
P.
,
Vaida
,
C.
,
Horvath
,
D.
,
Caprariu
,
A.
,
Burz
,
A.
,
Gherman
,
B.
,
Iakab
,
S.
, and
Pisla
,
D.
,
2022
, “
Design and Experimental Setup of a Robotic Medical Instrument for Brachytherapy in Non-Resectable Liver Tumors
,”
Cancers (Basel)
,
14
(
23
), p.
5841
.10.3390/cancers14235841
4.
Liu
,
W.
,
Yang
,
Z.
,
Li
,
P.
,
Zhang
,
J.
, and
Jiang
,
S.
,
2019
, “
Mechanics of Tissue Rupture During Needle Insertion in Transverse Isotropic Soft Tissue
,”
Med. Biol. Eng. Comput.
,
57
(
6
), pp.
1353
1366
.10.1007/s11517-019-01955-6
5.
Gu
,
X.
,
Hu
,
F.
,
Lin
,
C. L.
,
Erdman
,
A.
, and
Lu
,
L.
,
2019
, “
Using Simulation to Help Specify Design Parameters for Vacuum-Assisted Needle Biopsy Systems
,”
ASME J. Med. Devices
,
13
(
1
), p.
014502
.10.1115/1.4041487
6.
Wu
,
P. Y.
,
Kahraman
,
H.
, and
Yamaguchi
,
H.
,
2017
, “
Development of Aspiration-Assisted End-Cut Coaxial Biopsy Needles
,”
ASME J. Med. Devices
,
11
(
1
), p.
011012
.10.1115/1.4035688
7.
Khadem
,
M.
,
Rossa
,
C.
,
Sloboda
,
R. S.
,
Usmani
,
N.
, and
Tavakoli
,
M.
,
2016
, “
Mechanics of Tissue Cutting During Needle Insertion in Biological Tissue
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
800
807
.10.1109/LRA.2016.2528301
8.
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2010
, “
Mechanics of Dynamic Needle Insertion Into a Biological Material
,”
IEEE Trans. Biomed. Eng.
,
57
(
4
), pp.
934
943
.10.1109/TBME.2009.2036856
9.
Halabian
,
M.
,
Beigzadeh
,
B.
,
Karimi
,
A.
,
Shirazi
,
H. A.
, and
Shaali
,
M. H.
,
2016
, “
A Combination of Experimental and Finite Element Analyses of Needle–Tissue Interaction to Compute the Stresses and Deformations During Injection at Different Angles
,”
J. Clin. Monit. Comput.
,
30
(
6
), pp.
965
975
.10.1007/s10877-015-9801-9
10.
He
,
T.
,
Guo
,
C.
,
Liu
,
H.
, and
Jiang
,
L.
,
2022
, “
Research on Robotic Humanoid Venipuncture Method Based on Biomechanical Model
,”
J. Intell. Robot. Syst. Theory Appl.
,
106
(
1
), p.
31
.10.1007/s10846-022-01738-6
11.
Lin
,
C. L.
,
Jheng
,
Y. C.
,
Ng
,
S. Y.
, and
Yen
,
C. J.
,
2020
, “
Design Optimization of Nonrotational and Rotational Needle Insertion for Minimal Cutting Forces
,”
ASME J. Med. Devices
,
14
, p.
021002
.10.1115/1.4045725
12.
Gidde
,
S. T. R.
,
Ciuciu
,
A.
,
Devaravar
,
N.
,
Doracio
,
R.
,
Kianzad
,
K.
, and
Hutapea
,
P.
,
2020
, “
Effect of Vibration on Insertion Force and Deflection of Bioinspired Needle in Tissues
,”
Bioinspiration Biomimetics
,
15
(
5
), p.
054001
.10.1088/1748-3190/ab9341
13.
Barnett
,
A. C.
,
Jones
,
J. A.
,
Lee
,
Y.
, and
Moore
,
J. Z.
,
2016
, “
Compliant Needle Vibration Cutting of Soft Tissue
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111011
.10.1115/1.4033690
14.
Begg
,
N. D. M.
, and
Slocum
,
A. H.
,
2014
, “
Audible Frequency Vibration of Puncture-Access Medical Devices
,”
Med. Eng. Phys.
,
36
(
3
), pp.
371
377
.10.1016/j.medengphy.2013.12.011
15.
Wu
,
W.
,
Xu
,
C.
,
Pan
,
C.
,
Huang
,
Z.
,
Zhou
,
J.
, and
Huang
,
P.
,
2020
, “
Effect of Vibration Frequency on Frictional Resistance of Brain Tissue During Vibration-Assisted Needle Insertion
,”
Med. Eng. Phys.
,
86
, pp.
35
40
.10.1016/j.medengphy.2020.10.003
16.
Kundan
,
K.
,
Laha
,
S.
, and
Ghatak
,
A.
,
2019
, “
Vibration Assisted Puncturing of a Soft Brittle Solid
,”
Extrem. Mech. Lett.
,
26
, pp.
26
34
.10.1016/j.eml.2018.11.006
17.
Barnett
,
A. C.
,
Lee
,
Y.
, and
Moore
,
J. Z.
,
2018
, “
Needle Geometry Effect on Vibration Tissue Cutting
,”
Proc. Inst. Mech. Eng. Part B
,
232
(
5
), pp.
827
837
.10.1177/0954405416654188
18.
Khalaji
,
I.
,
Hadavand
,
M.
,
Asadian
,
A.
,
Patel
,
R. V.
, and
Naish
,
M. D.
,
2013
, “
Analysis of Needle-Tissue Friction During Vibration-Assisted Needle Insertion
,”
IEEE International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
4099
4104
.10.1109/IROS.2013.6696943
19.
Liang
,
Y.
,
Xu
,
D.
,
Wang
,
B.
,
Zhang
,
Y.
, and
Xu
,
Y.
,
2018
, “
Experimental Study of Needle Insertion Strategies of Seed Implantation Articulated Robot
,”
J. Mech. Med. Biol.
,
18
(
3
), p.
1850023
.10.1142/S0219519418500239
20.
Tan
,
L.
,
Jones
,
J. A.
,
Barnett
,
A. C.
,
Zhang
,
H.
,
Moore
,
J. Z.
, and
Zhang
,
Q.
,
2018
, “
Force Model for Ultrasonic Needle Insertion
,”
Exp. Tech.
,
42
(
5
), pp.
499
508
.10.1007/s40799-018-0255-0
21.
Kim
,
J. W.
,
Wei
,
S.
,
Zhang
,
P.
,
Gehlbach
,
P.
,
Kang
,
J. U.
,
Iordachita
,
I.
, and
Kobilarov
,
M.
,
2024
, “
Towards Autonomous Retinal Microsurgery Using RGB-D Images
,”
IEEE Robot. Autom. Lett.
,
9
(
4
), pp.
3807
3814
.10.1109/LRA.2024.3368192
22.
Hartman
,
R. R.
, and
Kompella
,
U. B.
,
2018
, “
Intravitreal, Subretinal, and Suprachoroidal Injections: Evolution of Microneedles for Drug Delivery
,”
J. Ocul. Pharmacol. Ther.
,
34
(
1–2
), pp.
141
153
.10.1089/jop.2017.0121
23.
Zhao
,
X.
,
Wang
,
F.
,
Tao
,
C.
,
Shi
,
B.
,
Huo
,
Z.
, and
Tian
,
Y.
,
2025
, “
Development of a Novel Retinal Surgery Robot Based on Spatial Variable Remote Center-of- Motion Mechanism
,”
ASME J. Mech. Robot.
,
17
(
3
), p.
031002
.10.1115/1.4066135
24.
Clement
,
R. S.
,
Unger
,
E. L.
,
Ocón-Grove
,
O. M.
,
Cronin
,
T. L.
, and
Mulvihill
,
M. L.
,
2016
, “
Effects of Axial Vibration on Needle Insertion Into the Tail Veins of Rats and Subsequent Serial Blood Corticosterone Levels
,”
J. Am. Assoc. Lab. Anim. Sci.
,
55
(
2
), pp.
204
212
.https://pmc.ncbi.nlm.nih.gov/articles/PMC4783640/#:~:text=Regarding%20reduction%2C%20needle%20vibration%20reduced,animals%20necessary%20in%20future%20studies.
25.
Han
,
S. F.
, and
Yang
,
Y.
,
2019
, “
Influence of Needling Conditions on the Corneal Insertion Force
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
16
), pp.
1239
1246
.10.1080/10255842.2019.1655002
26.
Lee
,
E. H.
, and
Radok
,
J. R. M.
,
1960
, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech.
,
27
(
3
), pp.
438
444
.10.1115/1.3644020
27.
Su
,
P.
,
Yang
,
Y.
,
Zhang
,
L.
, and
Huang
,
L.
,
2016
, “
Biomechanical Simulation of Needle Insertion Into Cornea Based on Distortion Energy Failure Criterion
,”
Acta Bioeng. Biomech.
,
18
(
1
), pp.
65
75
.10.5277/ABB-00248-2014-02
28.
Jiang
,
S.
,
Li
,
P.
,
Yu
,
Y.
,
Liu
,
J.
, and
Yang
,
Z.
,
2014
, “
Experimental Study of Needle-Tissue Interaction Forces: Effect of Needle Geometries, Insertion Methods and Tissue Characteristics
,”
J. Biomech.
,
47
(
13
), pp.
3344
3353
.10.1016/j.jbiomech.2014.08.007
29.
Managuli
,
V.
, and
Roy
,
S.
,
2017
, “
Simultaneous Analysis of Elastic and Nonspecific Adhesive Properties of Thin Sample and Biological Cell Considering Bottom Substrate Effect
,”
ASME J. Biomech. Eng.
,
139
, p.
091008
.10.1115/1.4037289
30.
Anderson
,
T.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
, CRC Press, Boca Raton, FL.
31.
Khadem
,
M.
,
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R. S.
, and
Tavakoli
,
M.
,
2016
, “
A Two-Body Rigid/Flexible Model of Needle Steering Dynamics in Soft Tissue
,”
IEEE/ASME Trans. Mechatron.
,
21
(
5
), pp.
2352
2364
.10.1109/TMECH.2016.2549505
32.
Li
,
S.
, and
Oldenburg
,
A. L.
,
2011
, “
Measuring Soft Tissue Elasticity by Monitoring Surface Acoustic Waves Using Image Plane Digital Holography
,”
Proc. SPIE
,
7965
, p.
79652M
.10.1117/12.883254
33.
Martiartu
,
N. K.
,
Nakhostin
,
D.
,
Ruby
,
L.
,
Frauenfelder
,
T.
,
Rominger
,
M. B.
, and
Sanabria
,
S. J.
,
2021
, “
Speed of Sound and Shear Wave Speed for Calf Soft Tissue Composition and Nonlinearity Assessment
,”
Quant. Imaging Med. Surg.
,
11
(
9
), pp.
4149
4161
.10.21037/qims-20-1321
34.
Li
,
Y.
,
Chen
,
Z.
,
Lin
,
L.
,
Liu
,
S.
,
Wang
,
H.
, and
Zhang
,
J.
,
2022
, “
Effect of Pores on the Stress Field of High-Frequency Vibration of TC17 Specimen Manufactured by Laser Additive
,”
Int. J. Fract.
,
235
(
1
), pp.
117
127
.10.1007/s10704-021-00613-z
35.
Liang
,
C.
,
Wang
,
F.
,
Huo
,
Z.
,
Shi
,
B.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2020
, “
Pull-Off Force Modeling and Experimental Study of PDMS Stamp Considering Preload in Micro Transfer Printing
,”
Int. J. Solids Struct.
,
193-194
, pp.
134
140
.10.1016/j.ijsolstr.2020.02.011
36.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1640
1660
.10.1177/0278364910369714
37.
Takabi
,
B.
, and
Tai
,
B. L.
,
2017
, “
A Review of Cutting Mechanics and Modeling Techniques for Biological Materials
,”
Med. Eng. Phys.
,
45
, pp.
1
14
.10.1016/j.medengphy.2017.04.004
38.
Asadian
,
A.
,
Patel
,
R. V.
, and
Kermani
,
M. R.
,
2014
, “
Dynamics of Translational Friction in Needle-Tissue Interaction During Needle Insertion
,”
Ann. Biomed. Eng.
,
42
(
1
), pp.
73
85
.10.1007/s10439-013-0892-5
39.
Huo
,
Z.
,
Tian
,
Y.
,
Wang
,
F.
,
Zhang
,
W.
,
Shi
,
B.
, and
Zhang
,
D.
,
2022
, “
A Dual-Driven High Precision Rotary Platform Based on Stick-Slip Principle
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
3053
3064
.10.1109/TMECH.2021.3125825
40.
Wang
,
F.
,
Zhao
,
X.
,
Huo
,
Z.
,
Shi
,
B.
,
Liang
,
C.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2021
, “
A 2-DOF Nano-Positioning Scanner With Novel Compound Decoupling-Guiding Mechanism
,”
Mech. Mach. Theory
,
155
, p.
104066
.10.1016/j.mechmachtheory.2020.104066
41.
Wang
,
F.
,
Zhao
,
X.
,
Guo
,
H.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2023
, “
Design, Modeling and Experiment of a Novel Ultrasonic Elliptical Vibration Generator
,”
Sens. Actuators, A
,
363
, p.
114707
.10.1016/j.sna.2023.114707
42.
Mach
,
K.
,
Wei
,
S.
,
Kim
,
J. W.
,
Martin-Gomez
,
A.
,
Zhang
,
P.
,
Kang
,
J. U.
,
Nasseri
,
M. A.
,
Gehlbach
,
P.
,
Navab
,
N.
, and
Iordachita
,
I.
,
2022
, “
OCT-Guided Robotic Subretinal Needle Injections: A Deep Learning-Based Registration Approach
,” IEEE International Conference on Bioinformatics and Biomedicine (
BIBM
), Las Vegas, NV, Dec. 6–8, pp.
781
786
.10.1109/BIBM55620.2022.9995143
43.
Vroon
,
J.
,
de Jong
,
J. H.
,
Aboulatta
,
A.
,
Eliasy
,
A.
,
van der Helm
,
F. C. T.
,
van Meurs
,
J. C.
,
Wong
,
D.
, and
Elsheikh
,
A.
,
2018
, “
Numerical Study of the Effect of Head and Eye Movement on Progression of Retinal Detachment
,”
Biomech. Model. Mechanobiol.
,
17
(
4
), pp.
975
983
.10.1007/s10237-018-1006-y
44.
Gilchrist
,
M. D.
,
Keenan
,
S.
,
Curtis
,
M.
,
Cassidy
,
M.
,
Byrne
,
G.
, and
Destrade
,
M.
,
2008
, “
Measuring Knife Stab Penetration Into Skin Simulant Using a Novel Biaxial Tension Device
,”
Forensic Sci. Int.
,
177
(
1
), pp.
52
65
.10.1016/j.forsciint.2007.10.010
45.
McCarthy
,
C. T.
,
Hussey
,
M.
, and
Gilchrist
,
M. D.
,
2007
, “
On the Sharpness of Straight Edge Blades in Cutting Soft Solids: Part I - Indentation Experiments
,”
Eng. Fract. Mech.
,
74
(
14
), pp.
2205
2224
.10.1016/j.engfracmech.2006.10.015
46.
Ferreira
,
J. A.
,
de Oliveira
,
P.
,
da Silva
,
P. M.
, and
Silva
,
R.
,
2023
, “
New Pathways for Drug and Gene Delivery to the Eye: A Mathematical Model
,”
Appl. Math. Model.
,
116
, pp.
695
710
.10.1016/j.apm.2022.11.018
47.
Wu
,
W.
,
Zhou
,
J.
,
Huang
,
P.
,
Pan
,
C.
,
Huang
,
Z.
, and
Xu
,
C.
,
2021
, “
Antifriction Mechanism of Longitudinal Vibration-Assisted Insertion in DBS
,”
Ann. Biomed. Eng.
,
49
(
9
), pp.
2057
2065
.10.1007/s10439-021-02730-1
You do not currently have access to this content.