Abstract

A suitable scaffold architecture is always desirable to get a biomimetic scaffold for bone tissue engineering. In this regard, a fluid structure interaction analysis was carried out on different Micro-CTs (μCTs) and gyroids to observe the in vitro mechanical responses due to fluid flow. Computational fluid dynamics method was used to evaluate the permeability and wall shear stress (WSS), followed by a finite element method to obtain the mechanical stress within scaffolds. Different types of gyroids were designed based on the number of unit cells and porosity, where porosity of gyroids was kept same as μCTs. The main objective of the study is to examine the variations of permeability, WSS and mechanical stress with respect to the number of unit cells and porosity for different gyroids and μCTs. Mechanical responses were also compared between gyroids and μCTs. The results of this study highlighted that permeability and WSS of μCTs came close to the gyroids with eight unit cells but had significant differences in mechanical stress. The permeability of gyroids increased with the increase of porosity but decreased with the increase in number of unit cells. The opposite trend was shown in case of WSS within gyroids. This study will guide us in predicting an ideal scaffold for trabecular bone replacement.

References

1.
Gurkan
,
U. A.
, and
Akkus
,
O.
,
2008
, “
The Mechanical Environment of Bone Marrow: A Review
,”
Ann. Biomed. Eng.
,
36
(
12
), pp.
1978
1991
.10.1007/s10439-008-9577-x
2.
Eswaran
,
S. K.
,
Gupta
,
A.
,
Adams
,
M. F.
, and
Keaveny
,
T. M.
,
2005
, “
Cortical and Trabecular Load Sharing in the Human Vertebral Body
,”
J. Bone Miner. Res.
,
21
(
2
), pp.
307
314
.10.1359/jbmr.2006.21.2.307
3.
Rabiatul
,
A. A. R.
,
Fatihhi
,
S. J.
,
Md Saad
,
A. P.
,
Zakaria
,
Z.
,
Harun
,
M. N.
,
Kadir
,
M. R. A.
,
Öchsner
,
A.
, et al.,
2021
, “
Fluid–Structure Interaction (FSI) Modeling of Bone Marrow Through Trabecular Bone Structure Under Compression
,”
Biomech. Model. Mechanobiol.
,
20
(
3
), pp.
957
968
.10.1007/s10237-021-01423-x
4.
Vaughan
,
T. J.
,
Voisin
,
M.
,
Niebur
,
G. L.
, and
McNamara
,
L. M.
,
2015
, “
Multiscale Modeling of Trabecular Bone Marrow: Understanding the Micromechanical Environment of Mesenchymal Stem Cells During Osteoporosis
,”
ASME J. Biomech. Eng.
,
137
(
1
), p.
011003
.10.1115/1.4028986
5.
Metzger
,
T. A.
,
Shudick
,
J. M.
,
Seekell
,
R.
,
Zhu
,
Y.
, and
Niebur
,
G. L.
,
2014
, “
Rheological Behavior of Fresh Bone Marrow and the Effects of Storage
,”
J. Mech. Behav. Biomed. Mater.
,
40
, pp.
307
313
.10.1016/j.jmbbm.2014.09.008
6.
Zhang
,
D.
,
Qiu
,
D.
,
Gibson
,
M. A.
,
Zheng
,
Y.
,
Fraser
,
H. L.
,
StJohn
,
D. H.
, and
Easton
,
M. A.
,
2019
, “
Additive Manufacturing of Ultrafine-Grained High-Strength Titanium Alloys
,”
Nature
,
576
(
7785
), pp.
91
95
.10.1038/s41586-019-1783-1
7.
Roy
,
S.
,
Panda
,
D.
,
Khutia
,
N.
, and
Chowdhury
,
A. R.
,
2014
, “
Pore Geometry Optimization of Titanium (Ti6Al4V) Alloy, for Its Application in the Fabrication of Customized Hip Implants
,”
Int. J. Biomater.
,
2014
, pp.
1
12
.10.1155/2014/313975
8.
Mitra
,
I.
,
Bose
,
S.
,
Dernell
,
W. S.
,
Dasgupta
,
N.
,
Eckstrand
,
C.
,
Herrick
,
J.
,
Yaszemski
,
M. J.
,
Goodman
,
S. B.
, and
Bandyopadhyay
,
A.
,
2021
, “
3D Printing in Alloy Design to Improve Biocompatibility in Metallic Implants
,”
Mater. Today
,
45
, pp.
20
34
.10.1016/j.mattod.2020.11.021
9.
Bhattacharyya
,
R.
,
Rana
,
M.
,
Gupta
,
A.
,
Dutta Majumdar
,
D.
,
Dutta Majumdar
,
J.
, and
Roy Chowdhury
,
A.
,
2022
, “
Modeling of Porous Titanium and Understanding Its Mechanical Behavior Using Micro-Computed Tomography
,”
J. Mater. Eng. Perform.
,
31
(
10
), pp.
8160
8168
.10.1007/s11665-022-06827-z
10.
Wiskott
,
H. A.
, and
Belser
,
U. C.
,
1999
, “
Lack of Integration of Smooth Titanium Surfaces: A Working Hypothesis Based on Strains Generated in the Surrounding Bone
,”
Clin. Oral Implants Res.
,
10
(
6
), pp.
429
444
.10.1034/j.1600-0501.1999.100601.x
11.
Sumner
,
D. R.
,
Turner
,
T. M.
,
Igloria
,
R.
,
Urban
,
R. M.
, and
Galante
,
J. O.
,
1998
, “
Functional Adaptation and Ingrowth of Bone Vary as a Function of Hip Implant Stiffness
,”
J. Biomech.
,
31
(
10
), pp.
909
917
.10.1016/S0021-9290(98)00096-7
12.
Xu
,
W.
,
Lu
,
X.
,
Hayat
,
M. D.
,
Tian
,
J.
,
Huang
,
C.
,
Chen
,
M.
,
Qu
,
X.
, and
Wen
,
C.
,
2019
, “
Fabrication and Properties of Newly Developed Ti35Zr28Nb Scaffolds Fabricated by Powder Metallurgy for Bone-Tissue Engineering
,”
J. Mater. Res. Technol.
,
8
(
5
), pp.
3696
3704
.10.1016/j.jmrt.2019.06.021
13.
Zadpoor
,
A. A.
,
2019
, “
Mechanical Performance of Additively Manufactured Meta-Biomaterials
,”
Acta Biomater.
,
85
, pp.
41
59
.10.1016/j.actbio.2018.12.038
14.
Gómez
,
S.
,
Vlad
,
M. D.
,
López
,
J.
, and
Fernández
,
E.
,
2016
, “
Design and Properties of 3D Scaffolds for Bone Tissue Engineering
,”
Acta Biomater.
,
42
, pp.
341
350
.10.1016/j.actbio.2016.06.032
15.
Wu
,
S.
,
Liu
,
X.
,
Yeung
,
K. W.
,
Liu
,
C.
, and
Yang
,
X.
,
2014
, “
Biomimetic Porous Scaffolds for Bone Tissue Engineering
,”
Mater. Sci. Eng.: R: Rep.
,
80
, pp.
1
36
.10.1016/j.mser.2014.04.001
16.
Elmadih
,
W.
,
Syam
,
W. P.
,
Maskery
,
I.
,
Chronopoulos
,
D.
, and
Leach
,
R.
,
2019
, “
Mechanical Vibration Bandgaps in Surface-Based Lattices
,”
Addit. Manuf.
,
25
, pp.
421
429
.10.1016/j.addma.2018.11.011
17.
Yuan
,
L.
,
Ding
,
S.
, and
Wen
,
C.
,
2019
, “
Additive Manufacturing Technology for Porous Metal Implant Applications and Triple Minimal Surface Structures: A Review
,”
Bioactive Mater.
,
4
, pp.
56
70
.10.1016/j.bioactmat.2018.12.003
18.
Zhang
,
L.
,
Feih
,
S.
,
Daynes
,
S.
,
Chang
,
S.
,
Wang
,
M. Y.
,
Wei
,
J.
, and
Lu
,
W. F.
,
2018
, “
Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures Under Compressive Loading
,”
Addit. Manuf.
,
23
, pp.
505
515
.10.1016/j.addma.2018.08.007
19.
Schoen
,
A. H.
,
1970
, “
Infinite Periodic Minimal Surfaces Without Self-Intersections
,”
National Aeronautics and Space Administration, Document ID: 19700020472, Report No. NASA-TN-D-5541
.https://ntrs.nasa.gov/citations/19700020472
20.
Yu
,
G.
,
Li
,
Z.
,
Li
,
S.
,
Zhang
,
Q.
,
Hua
,
Y.
,
Liu
,
H.
,
Zhao
,
X.
, et al.,
2020
, “
The Select of Internal Architecture for Porous Ti Alloy Scaffold: A Compromise Between Mechanical Properties and Permeability
,”
Mater. Des.
,
192
, p.
108754
.10.1016/j.matdes.2020.108754
21.
Ali
,
D.
, and
Sen
,
S.
,
2018
, “
Permeability and Fluid Flow-Induced Wall Shear Stress of Bone Tissue Scaffolds: Computational Fluid Dynamic Analysis Using Newtonian and non-Newtonian Blood Flow Models
,”
Comput. Biol. Med.
,
99
, pp.
201
208
.10.1016/j.compbiomed.2018.06.017
22.
Ma
,
S.
,
Tang
,
Q.
,
Han
,
X.
,
Feng
,
Q.
,
Song
,
J.
,
Setchi
,
R.
,
Liu
,
Y.
, et al.,
2020
, “
Manufacturability, Mechanical Properties, Mass-Transport Properties and Biocompatibility of Triply Periodic Minimal Surface (TPMS) Porous Scaffolds Fabricated by Selective Laser Melting
,”
Mater. Des.
,
195
, p.
109034
.10.1016/j.matdes.2020.109034
23.
Ali
,
D.
, and
Sen
,
S.
,
2017
, “
Finite Element Analysis of Mechanical Behavior, Permeability and Fluid Induced Wall Shear Stress of High Porosity Scaffolds With Gyroid and Lattice-Based Architectures
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
262
270
.10.1016/j.jmbbm.2017.07.035
24.
Campos Marin
,
A.
, and
Lacroix
,
D.
,
2015
, “
The Inter-Sample Structural Variability of Regular Tissue-Engineered Scaffolds Significantly Affects the Micromechanical Local Cell Environment
,”
Interface Focus
,
5
(
2
), p.
20140097
.10.1098/rsfs.2014.0097
25.
Li
,
Y. J.
,
Batra
,
N. N.
,
You
,
L.
,
Meier
,
S. C.
,
Coe
,
I. A.
,
Yellowley
,
C. E.
, and
Jacobs
,
C. R.
,
2004
, “
Oscillatory Fluid Flow Affects Human Marrow Stromal Cell Proliferation and Differentiation
,”
J. Orthop. Res.
,
22
(
6
), pp.
1283
1289
.10.1016/j.orthres.2004.04.002
26.
Klein-Nulend
,
J.
,
Bacabac
,
R. G.
, and
Bakker
,
A. D.
, Department of Oral Cell Biology, Research Institute MOVE, ACTA-VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
2012
, “
Mechanical Loading and How It Affects Bone Cells: The Role of the Osteocyte Cytoskeleton in Maintaining Our Skeleton
,”
Eur. Cell Mater.
,
24
(
2
), pp.
278
291
.10.22203/eCM.v024a20
27.
Birmingham
,
E.
,
Grogan
,
J. A.
,
Niebur
,
G. L.
,
McNamara
,
L. M.
, and
McHugh
,
P. E.
,
2013
, “
Computational Modeling of the Mechanics of Trabecular Bone and Marrow Using Fluid Structure Interaction Techniques
,”
Ann. Biomed. Eng.
,
41
(
4
), pp.
814
826
.10.1007/s10439-012-0714-1
28.
Metzger
,
T. A.
,
Kreipke
,
T. C.
,
Vaughan
,
T. J.
,
McNamara
,
L. M.
, and
Niebur
,
G. L.
,
2015
, “
The in Situ Mechanics of Trabecular Bone Marrow: The Potential for Mechanobiological Response
,”
ASME J. Biomech. Eng.
,
137
(
1
), p. 011006.10.1115/1.4028985
29.
Rezapourian
,
M.
,
Jasiuk
,
I.
,
Saarna
,
M.
, and
Hussainova
,
I.
,
2023
, “
Selective Laser Melted Ti6Al4V Split-P TPMS Lattices for Bone Tissue Engineering
,”
Int. J. Mech. Sci.
,
251
, p.
108353
.10.1016/j.ijmecsci.2023.108353
30.
Liang
,
H.
,
Chao
,
L.
,
Xie
,
D.
,
Yang
,
Y.
,
Shi
,
J.
,
Zhang
,
Y.
,
Xue
,
B.
,
Shen
,
L.
,
Tian
,
Z.
,
Li
,
L.
, and
Jiang
,
Q.
,
2022
, “
Trabecular-Like Ti–6Al–4V Scaffold for Bone Repair: A Diversified Mechanical Stimulation Environment for Bone Regeneration
,”
Compos. Part B: Eng.
,
241
, p.
110057
.10.1016/j.compositesb.2022.110057
31.
Lai
,
W. M.
,
Rubin
,
D.
, and
Krempl
,
E.
,
1993
,
Introduction to Continuum Mechanics
,
Butterworth Heinemann
,
Oxford, UK
.
32.
Ma
,
S.
,
Tang
,
Q.
,
Feng
,
Q.
,
Song
,
J.
,
Han
,
X.
, and
Guo
,
F.
,
2019
, “
Mechanical Behaviors and Mass Transport Properties of Bone-Mimicking Scaffolds Consisted of Gyroid Structures Manufactured Using Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
93
, pp.
158
169
.10.1016/j.jmbbm.2019.01.023
33.
Ali
,
D.
,
Ozalp
,
M.
,
Blanquer
,
S. B.
, and
Onel
,
S.
,
2020
, “
Permeability and Fluid Flow-Induced Wall Shear Stress in Bone Scaffolds With TPMS and Lattice Architectures: A CFD Analysis
,”
Eur. J. Mech.-B/Fluids
,
79
, pp.
376
385
.10.1016/j.euromechflu.2019.09.015
34.
Barreto
,
S.
,
Perrault
,
C. M.
, and
Lacroix
,
D.
,
2014
, “
Structural Finite Element Analysis to Explain Cell Mechanics Variability
,”
J. Mech. Behav. Biomed. Mater.
,
38
, pp.
219
231
.10.1016/j.jmbbm.2013.11.022
35.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J. P.
, and
Rodríguez-Ferran
,
A.
,
2004
, “
Arbitrary Lagrangian–Eulerian Methods
,”
Encyclopedia Comput. Mech.
, 1, pp.
1
41
.https://ww2.lacan.upc.edu/scientificPublications/files/pdfs/2004-TECM-DHPR-blanc.pdf
36.
Zhao
,
F.
,
Vaughan
,
T. J.
, and
Mcnamara
,
L. M.
,
2015
, “
Multiscale Fluid–Structure Interaction Modeling to Determine the Mechanical Stimulation of Bone Cells in a Tissue Engineered Scaffold
,”
Biomech. Model. Mechanobiol.
,
14
(
2
), pp.
231
243
.10.1007/s10237-014-0599-z
37.
Li
,
T.
,
Chen
,
Z.
,
Gao
,
Y.
,
Zhu
,
L.
,
Yang
,
R.
,
Leng
,
H.
, and
Huo
,
B.
,
2020
, “
Fluid–Solid Coupling Numerical Simulation of Trabecular Bone Under Cyclic Loading in Different Directions
,”
J. Biomech.
,
109
, p.
109912
.10.1016/j.jbiomech.2020.109912
38.
Nauman
,
E. A.
,
Fong
,
K. E.
, and
Keaveny
,
T. M.
,
1999
, “
Dependence of Intertrabecular Permeability on Flow Direction and Anatomic site
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
517
524
.10.1114/1.195
39.
Gupta
,
A.
,
Rana
,
M.
,
Mondal
,
N.
,
Das
,
A.
,
Karmakar
,
A.
, and
Chowdhury
,
A. R.
,
2023
, “
Designing of Different Types of Gyroid Scaffold Architecture to Achieve Patient-Specific Osseointegration Friendly Mechanical Environment
,”
Int. J. Multiscale Comput. Eng.
,
21
(
4
), pp.
1
15
.10.1615/IntJMultCompEng.2022043461
40.
Zhao
,
F.
,
Vaughan
,
T. J.
, and
McNamara
,
L. M.
,
2016
, “
Quantification of Fluid Shear Stress in Bone Tissue Engineering Scaffolds With Spherical and Cubical Pore Architectures
,”
Biomech. Model. Mechanobiol.
,
15
(
3
), pp.
561
577
.10.1007/s10237-015-0710-0
41.
Li
,
D.
,
Tang
,
T.
,
Lu
,
J.
, and
Dai
,
K.
,
2009
, “
Effects of Flow Shear Stress and Mass Transport on the Construction of a Large-Scale Tissue-Engineered Bone in a Perfusion Bioreactor
,”
Tissue Eng. Part A
,
15
(
10
), pp.
2773
2783
.10.1089/ten.tea.2008.0540
42.
Wang
,
S.
,
Shi
,
Z.
,
Liu
,
L.
,
Huang
,
Z.
,
Li
,
Z.
,
Liu
,
J.
, and
Hao
,
Y.
,
2021
, “
Honeycomb Structure is Promising for the Repair of Human Bone Defects
,”
Mater. Des.
,
207
, p.
109832
.10.1016/j.matdes.2021.109832
You do not currently have access to this content.