Abstract

Millions of people with disabilities, the elderly, and individuals suffering from physical deformities rely on assistive devices to perform basic actions and movements. With the increasing number of these individuals, the lack of available medical equipment/assistive personnel, and the size, bulkiness, and cost of assistive devices found in rehabilitation centers, there has been a growing interest in the research for lighter, portable, and cost-effective personal external assistive devices. In this paper, a new prototype of an ankle-foot exoskeleton was engineered with low-cost printed material that maintains structural integrity while providing appropriate comfort and support for the wearer. This ankle-foot exoskeleton was fabricated using thermoplastic polyurethane (TPU) and polylactic acid (PLA), common materials used for three-dimensional printing. The printed pieces were combined with zinc-nickel hinge joints to create a one-degree-of-freedom (DOF) support system. Finite element analysis on both fabricated parts indicates an average safety factor of 4 at applied loads of 700 N and 100 N to the foot and calf sections respectively. A pressure insole system consisting of a silicone-based pressure mold, force-sensitive resistors, and a microcontroller circuit was developed to measure foot pressure experienced during standing and stepping motion. This exoskeleton was also subjected to actuation tests via an external torque motor to obtain ankle trajectory profiles at various walking speeds.

References

1.
Swaminathan
,
K.
,
Park
,
S.
,
Raza
,
F.
,
Porciuncula
,
F.
,
Lee
,
S.
,
Nuckols
,
R. W.
,
Awad
,
L. N.
, and
Walsh
,
C. J.
,
2021
, “
Ankle Resistance With a Unilateral Soft Exosuit Increases Plantarflexor Effort During Pushoff in Unimpaired Individuals
,”
J. Neuroeng. Rehabil.
,
18
(
1
), p.
182
.10.1186/s12984-021-00966-5
2.
Rao
,
S.
,
Riskowski
,
J. L.
, and
Hannan
,
M. T.
,
2012
, “
Musculoskeletal Conditions of the Foot and Ankle: Assessments and Treatment Options
,”
Best Pract. Res., Clin. Rheumatol.
,
26
(
3
), pp.
345
368
.10.1016/j.berh.2012.05.009
3.
GBD 2016 Lifetime Risk of Stroke Collaborators
,
2018
, “
Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016
,”
N. Engl. J. Med.
,
379
(
25
), pp.
2429
2437
.10.1056/NEJMoa1804492
4.
Shi
,
D.
,
Zhang
,
W.
,
Zhang
,
W.
, and
Ding
,
X.
,
2019
, “
A Review on Lower Limb Rehabilitation Exoskeleton Robots
,”
Chin. J. Mech. Eng.
,
32
(
1
), pp.
1
11
.10.1186/s10033-019-0389-8
5.
Lee
,
H.
,
Ferguson
,
P. W.
,
Rosen
,
J.
, and
Ferguson
,
P. W.
,
2020
, “
Lower Limb Exoskeleton Systems—Overview
,”
Wearable Robotics
,
J.
Rosen
, ed.,
Elsevier
,
San Diego, CA
, pp.
207
229
.
6.
Kalita
,
B.
,
Narayan
,
J.
, and
Dwivedy
,
S. K.
,
2021
, “
Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review
,”
Int. J. Soc. Robot.
,
13
(
4
), pp.
775
793
.10.1007/s12369-020-00662-9
7.
Siviy
,
C.
,
Baker
,
L. M.
,
Quinlivan
,
B. T.
,
Porciuncula
,
F.
,
Swaminathan
,
K.
,
Awad
,
L. N.
, and
Walsh
,
C. J.
,
2022
, “
Opportunities and Challenges in the Development of Exoskeletons for Locomotor Assistance
,”
Nat. Biomed. Eng.
,
7
(
4
), pp.
456
472
.10.1038/s41551-022-00984-1
8.
Asbeck
,
A. T.
,
Schmidt
,
K.
,
Galiana
,
I.
,
Wagner
,
D.
, and
Walsh
,
C. J.
,
2015
, “
Multi-Joint Soft Exosuit for Gait Assistance
,” 2015 IEEE International Conference on Robotics and Automation
(ICRA)
, Seattle, WA, May 26–30
,
pp.
6197
6204
.10.1109/ICRA.2015.7140069
9.
Oghogho
,
M.
,
Sharifi
,
M.
,
Vukadin
,
M.
,
Chin
,
C.
,
Mushahwar
,
V. K.
, and
Tavakoli
,
M.
,
2022
, “
Deep Reinforcement Learning for EMG-Based Control of Assistance Level in Upper-Limb Exoskeletons
,” 2022 International Symposium on Medical Robotics
(ISMR)
,
Atlanta, GA, Apr. 13–15
, pp.
1
7
.10.1109/ISMR48347.2022.9807562
10.
Panizzolo
,
F. A.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
A Biologically-Inspired Multi-Joint Soft Exosuit That Can Reduce the Energy Cost of Loaded Walking
,”
J. Neuroeng. Rehabil.
,
13
(
1
), p.
43
.10.1186/s12984-016-0150-9
11.
Porciuncula
,
F.
,
Baker
,
T. C.
,
Arumukhom Revi
,
D.
,
Bae
,
J.
,
Sloutsky
,
R.
,
Ellis
,
T. D.
,
Walsh
,
C. J.
, and
Awad
,
L. N.
,
2021
, “
Targeting Paretic Propulsion and Walking Speed With a Soft Robotic Exosuit: A Consideration-of-Concept Trial
,”
Front. Neurorobot.
,
15
, p.
689577
.10.3389/fnbot.2021.689577
12.
Sharifi
,
M.
,
Mehr
,
J. K.
,
Mushahwar
,
V. K.
, and
Tavakoli
,
M.
,
2022
, “
Autonomous Locomotion Trajectory Shaping and Nonlinear Control for Lower Limb Exoskeletons
,”
IEEE ASME Trans. Mechatron.
,
27
(
2
), pp.
645
655
.10.1109/TMECH.2022.3156168
13.
In
,
H.
,
Jeong
,
U.
,
Lee
,
H.
, and
Cho
,
K.-J.
,
2017
, “
A Novel Slack-Enabling Tendon Drive That Improves Efficiency, Size, and Safety in Soft Wearable Robots
,”
IEEE ASME Trans. Mechatron.
,
22
(
1
), pp.
59
70
.10.1109/TMECH.2016.2606574
14.
Sharifi
,
M.
,
Mehr
,
J. K.
,
Mushahwar
,
V. K.
, and
Tavakoli
,
M.
,
2021
, “
Adaptive CPG-Based Gait Planning With Learning-Based Torque Estimation and Control for Exoskeletons
,”
IEEE Robot. Autom. Lett.
,
6
(
4
), pp.
8261
8268
.10.1109/LRA.2021.3105996
15.
Kwon
,
J.
,
Park
,
J.-H.
,
Ku
,
S.
,
Jeong
,
Y.
,
Paik
,
N.-J.
, and
Park
,
Y.-L.
,
2019
, “
A Soft Wearable Robotic Ankle-Foot-Orthosis for Post-Stroke Patients
,”
IEEE Robot. Autom. Lett.
,
4
(
3
), pp.
2547
2552
.10.1109/LRA.2019.2908491
16.
Bae
,
J.
,
Siviy
,
C.
,
Rouleau
,
M.
,
Menard
,
N.
,
Odonnell
,
K.
,
Geliana
,
I.
,
Athanassiu
,
M.
, et al.,
2018
, “
A Lightweight and Efficient Portable Soft Exosuit for Paretic Ankle Assistance in Walking After Stroke
,” 2018 IEEE International Conference on Robotics and Automation
(ICRA)
, Brisbane, QLD, Australia, May 21–25, pp.
2820
2827
.10.1109/ICRA.2018.8461046
17.
Aqueveque
,
P.
,
Germany
,
E.
,
Osorio
,
R.
, and
Pastene
,
F.
,
2019
, “
Simple Gait Segmentation Method Using a Novel Plantar Pressure Measurement System With Custom-Made Capacitive Sensors: Preliminary Results
,” 2019 IEEE Global Humanitarian Technology Conference
(GHTC),
Seattle, WA, Oct. 17–20, pp.
1
4
.10.1109/GHTC46095.2019.9033015
18.
Azimi
,
V.
,
Nguyen
,
T. T.
,
Sharifi
,
M.
,
Fakoorian
,
S. A.
, and
Simon
,
D.
,
2018
, “
Robust Ground Reaction Force Estimation and Control of Lower-Limb Prostheses: Theory and Simulation
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
50
(
8
), pp.
1
12
.10.1109/TSMC.2018.2836913
19.
Hu
,
J.
,
Cao
,
H.
,
Zhang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
Wearable Plantar Pressure Detecting System Based on FSR
,” 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference
(IMCEC)
,
Xi'an, China
, May 25–27, pp.
1687
1691
.10.1109/IMCEC.2018.8469666
20.
Pappas
,
I. P. I.
,
Keller
,
T.
,
Mangold
,
S.
,
Popovic
,
M.
,
Dietz
,
V.
, and
Morari
,
M.
,
2004
, “
A Reliable Gyroscope-Based Gait-Phase Detection Sensor Embedded in a Shoe Insole
,”
IEEE Sens. J.
,
4
(
2
), pp.
268
274
.10.1109/JSEN.2004.823671
21.
Razak
,
A. H. A.
,
Zayegh
,
A.
,
Begg
,
R. K.
, and
Wahab
,
Y.
,
2012
, “
Foot Plantar Pressure Measurement System: A Review
,”
Sensors
,
12
(
7
), pp.
9884
9912
.10.3390/s120709884
22.
Park
,
J.
,
Kim
,
M.
,
Hong
,
I.
,
Kim
,
T.
,
Lee
,
E.
,
Kim
,
E.-A.
,
Ryu
,
J.-K.
, et al.,
2019
, “
Foot Plantar Pressure Measurement System Using Highly Sensitive Crack-Based Sensor
,”
Sensors
,
19
(
24
), p.
5504
.10.3390/s19245504
23.
Crea
,
S.
,
Donati
,
M.
,
De Rossi
,
S. M. M.
,
Oddo
,
C. M.
, and
Vitiello
,
N.
,
2014
, “
A Wireless Flexible Sensorized Insole for Gait Analysis
,”
Sensors
,
14
(
1
), pp.
1073
1093
.10.3390/s140101073
24.
Wibowo
,
D. B.
,
Suprihanto
,
A.
,
Caesarendra
,
W.
,
Khoeron
,
S.
,
Glowacz
,
A.
, and
Irfan
,
M.
,
2020
, “
A Simple Foot Plantar Pressure Measurement Platform System Using Force-Sensing Resistors
,”
Appl. Syst. Innov.
,
3
(
3
), p.
33
.10.3390/asi3030033
25.
Lim
,
D.-H.
,
Kim
,
W.-S.
,
Kim
,
H.-J.
, and
Han
,
C.-S.
,
2017
, “
Development of Real-Time Gait Phase Detection System for a Lower Extremity Exoskeleton Robot
,”
Int. J. Precis. Eng. Manuf.
,
18
(
5
), pp.
681
687
.10.1007/s12541-017-0081-9
26.
Nilsson
,
J.
, and
Thorstensson
,
A.
,
1989
, “
Ground Reaction Forces at Different Speeds of Human Walking and Running
,”
Acta Physiol. Scand.
,
136
(
2
), pp.
217
227
.10.1111/j.1748-1716.1989.tb08655.x
27.
Lencioni
,
T.
,
Carpinella
,
I.
,
Rabuffetti
,
M.
,
Marzegan
,
A.
, and
Ferrarin
,
M.
,
2019
, “
Human Kinematic, Kinetic and EMG Data During Different Walking and Stair Ascending and Descending Tasks
,”
Sci. Data
,
6
(
1
), p.
309
.10.1038/s41597-019-0323-z
28.
Nuzik
,
S.
,
Lamb
,
R.
,
VanSant
,
A.
, and
Hirt
,
S.
,
1986
, “
Sit-to-Stand Movement Pattern: A Kinematic Study
,”
Phys. Ther.
,
66
(
11
), pp.
1708
1713
.10.1093/ptj/66.11.1708
You do not currently have access to this content.