Abstract

Acute respiratory distress syndrome (ARDS) is a condition secondary to direct or indirect insult to lungs, leading to acute respiratory failure, and is associated with high mortality. Majority of the ARDS patients require mechanical ventilation, which acts as double-edged sword. Ventilator induced lung injury (VILI) is considered secondary to high inspiratory pressure and cyclical opening during inspiration, and collapse during expiration as suggested by ARDS network clinical trials. Other mechanism for VILI exist secondary to heterogeneous ventilation. To enumerate these mechanisms leading to VILI, a computational fluids dynamics (CFD) study was performed in this study to explore the flow patterns and the pressure distribution in a human tracheobronchial airway model from third to sixth generation branches. The authors validated the computational methodology and analyzed the results to obtain velocity profiles in the primary and secondary flow directions. The study investigated the role of various flow velocities corresponding to Reynolds number (Re) from 100 to 2000 on the pressure drops along branches and bifurcation zones. The identification of secondary flow patterns was critical in understanding the development of asymmetric velocity profiles in the triple bifurcation geometry. The observed patterns in pressure drops and velocity profiles over the laminar flow regime pave the path toward further development of a numerical model to aid treatment for patients with ARDS.

References

1.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D. E.
,
Filley
,
G. F.
, and
Cumming
,
G.
,
1971
, “
Models of the Human Bronchial Tree
,”
J. Appl. Physiol.
,
31
(
2
), pp.
207
217
.10.1152/jappl.1971.31.2.207
2.
Weibel
,
E. R.
,
1963
,
Morphometry of the Human Lung
,
Academic Press
,
New York
.
3.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2010
, “
Airflow and Particle Transport in the Human Respiratory System
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
301
334
.10.1146/annurev-fluid-121108-145453
4.
Andrade
,
J. S.
, Jr.
,
Alencar
,
A. M.
,
Almeida
,
M. P.
,
Filho
,
J. M.
,
Buldyrev
,
S. V.
,
Zapperi
,
S.
,
Stanley
,
H. E.
, and
Suki
,
B.
,
1998
, “
Asymmetric Flow in Symmetric Branched Structures
,”
Phys. Rev. Lett.
,
81
(
4
), pp.
926
929
.10.1103/PhysRevLett.81.926
5.
Calay
,
R. K.
,
Kurujareon
,
J.
, and
Holdo
,
A. E.
,
2002
, “
Numerical Simulation of Respiratory Flow Patterns Within Human Lung
,”
Respir. Physiol. Neurobiol.
,
130
(
2
), pp.
201
221
.10.1016/S0034-5687(01)00337-1
6.
Mauroy
,
B.
,
Filoche
,
M.
,
Andrade
,
J. S.
, Jr.
, and
Sapoval
,
B.
,
2003
, “
Interplay Between Geometry and Flow Distribution in an Airway Tree
,”
Phys. Rev. Lett.
,
90
(
14
), p.
148101
.10.1103/PhysRevLett.90.148101
7.
Wilquem
,
F.
, and
Degrez
,
G.
,
1997
, “
Numerical Modeling of Steady Inspiratory Airflow Through a Three-Generation Model of the Human Central Airways
,”
ASME J. Biomech. Eng.
,
119
(
1
), pp.
59
65
.10.1115/1.2796065
8.
Liu
,
Y.
,
So
,
R. M. C.
, and
Zhang
,
C. H.
,
2002
, “
Modeling the Bifurcating Flow in a Human Lung Airway
,”
J. Biomech.
,
35
(
4
), pp.
465
473
.10.1016/S0021-9290(01)00225-1
9.
Srivastav
,
V. K.
,
Jain
,
A.
,
Paul
,
A. R.
, and
Joshi
,
S.
,
2011
, “
CFD Modelling of Airflow in Human Respiratory System
,” Proceedings of the 9th International Conference on Mechanical Engineering (
ICME-2011
), Dhaka, Bangladesh, Dec. 18–20, Paper No. ICME11-FL-09.https://www.researchgate.net/publication/264742686_CFD_Modelling_of_Airflow_in_Human_Respiratory_System
10.
Slutsky
,
A. S.
, and
Ranieri
,
V. M.
,
2013
, “
Ventilator-Induced Lung Injury
,”
N. Engl. J. Med.
,
369
(
22
), pp.
2126
2136
.10.1056/NEJMra1208707
11.
Gattinoni
,
L.
,
Carlesso
,
E.
,
Cadringher
,
P.
,
Valenza
,
F.
,
Vagginelli
,
F.
, and
Chiumello
,
D.
,
2003
, “
Physical and Biological Triggers of Ventilator-Induced Lung Injury and Its Prevention
,”
Eur. Respir. J.
,
22
(
Suppl. 47
), pp.
15s
25s
.10.1183/09031936.03.00021303
12.
Beitler
,
J. R.
,
Malhotra
,
A.
, and
Thompson
,
B. T.
,
2016
, “
Ventilator-Induced Lung Injury
,”
Clin. Chest Med.
,
37
(
4
), pp.
633
646
.10.1016/j.ccm.2016.07.004
13.
Ou
,
C.
,
Hang
,
J.
, and
Deng
,
Q.
,
2020
, “
Particle Deposition in Human Lung Airways: Effects of Airflow, Particle Size, and Mechanisms
,”
Aerosol Air Qual. Res.
,
20
(
12
), pp.
2846
2858
.10.4209/aaqr.2020.02.0067
14.
Hofmann
,
W.
,
Balásházy
,
I.
, and
Koblinger
,
L.
,
1995
, “
The Effect of Gravity on Particle Deposition Patterns in Bronchial Airway Bifurcations
,”
J. Aerosol Sci.
,
26
(
7
), pp.
1161
1168
.10.1016/0021-8502(95)00044-D
15.
Comer
,
J. K.
,
Kleinstreuer
,
C.
,
Hyun
,
S.
, and
Kim
,
C. S.
,
2000
, “
Aerosol Transport and Deposition in Sequentially Bifurcating Airways
,”
ASME J. Biomech. Eng.
,
122
(
2
), pp.
152
158
.10.1115/1.429636
16.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
,
2002
, “
Cyclic Micron-Size Particle Inhalation and Deposition in a Triple Bifurcation Lung Airway Model
,”
J. Aerosol Sci.
,
33
(
2
), pp.
257
281
.10.1016/S0021-8502(01)00170-7
17.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
,
2009
, “
Comparison of Analytical and CFD Models With Regard to Micron Particle Deposition in a Human 16-Generation Tracheobronchial Airway Model
,”
J. Aerosol Sci.
,
40
(
1
), pp.
16
28
.10.1016/j.jaerosci.2008.08.003
18.
van Ertbruggen
,
C.
,
Hirsch
,
C.
, and
Paiva
,
M.
,
2005
, “
Anatomically Based Three-Dimensional Model of Airways to Simulate Flow and Particle Transport Using Computational Fluid Dynamics
,”
J. Appl. Physiol.
,
98
(
3
), pp.
970
980
.10.1152/japplphysiol.00795.2004
19.
Guha
,
A.
, and
Pradhan
,
K.
,
2017
, “
Secondary Motion in Three-Dimensional Branching Networks
,”
Phys. Fluids
,
29
(
6
), p.
063602
.10.1063/1.4984919
20.
Dean
,
W. R.
,
1928
, “
The Stream-Line Motion of Fluid in a Curved Pipe
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
5
(
30
), pp.
673
695
.10.1080/14786440408564513
21.
Guha
,
A.
,
Pradhan
,
K.
, and
Halder
,
P. K.
,
2016
, “
Finding Order in Complexity: A Study of the Fluid Dynamics in a Three-Dimensional Branching Network
,”
Phys. Fluids
,
28
(
12
), p.
123602
.10.1063/1.4971315
22.
Horlock
,
J. H.
,
1956
, “
Some Experiments on the Secondary Flow in Pipe Bends
,”
Proc. R. Soc. London, Ser. A
,
234
(
1198
), pp.
335
346
.10.1098/rspa.1956.0038
23.
Hawthorne
,
W. R.
,
1955
, “
The Growth of Secondary Circulation in Frictionless Flow
,”
Math. Proc. Cambridge Philos. Soc.
,
51
(
4
), pp.
737
743
.10.1017/S0305004100030802
24.
Rowe
,
M.
,
1970
, “
Measurements and Computations of Flow in Pipe Bends
,”
J. Fluid Mech.
,
43
(
4
), pp.
771
783
.10.1017/S0022112070002732
25.
Agrawal
,
Y.
,
Talbot
,
L.
, and
Gong
,
K.
,
1978
, “
Laser Anemometer Study of Flow Development in Curved Circular Pipes
,”
J. Fluid Mech.
,
85
(
3
), pp.
497
518
.10.1017/S0022112078000762
26.
Dey
,
S.
,
2002
, “
Secondary Boundary Layer and Wall Shear for Fully Developed Flow in Curved Pipes
,”
Proc. R. Soc. London, Ser. A
,
458
(
2018
), pp.
283
298
.10.1098/rspa.2001.0838
27.
Barua
,
S. N.
,
1963
, “
On Secondary Flow in Stationary Curved Pipes
,”
Q. J. Mech. Appl. Math.
,
16
(
1
), pp.
61
77
.10.1093/qjmam/16.1.61
28.
Talbot
,
L.
, and
Gong
,
K.
,
1983
, “
Pulsatile Entrance Flow in a Curved Pipe
,”
J. Fluid Mech.
,
127
, pp.
1
25
.10.1017/S002211208300258X
29.
Horsfield
,
K.
, and
Thurlbeck
,
A.
,
1981
, “
Relation Between Diameter and Flow in Branches of the Bronchial Tree
,”
Bull. Math. Biol.
,
43
(
6
), pp.
681
691
.10.1016/S0092-8240(81)80046-8
30.
Longest
,
P. W.
, and
Vinchurkar
,
S.
,
2007
, “
Effects of Mesh Style and Grid Convergence on Particle Deposition in Bifurcating Airway Models With Comparisons to Experimental Data
,”
Med. Eng. Phys.
,
29
(
3
), pp.
350
366
.10.1016/j.medengphy.2006.05.012
31.
Comer
,
J.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2001
, “
Flow Structures and Particle Deposition Patterns in Double-Bifurcation Airway Models. Part 1. Air Flow Fields
,”
J. Fluid Mech.
,
435
, pp.
25
54
.10.1017/S0022112001003809
32.
Nowak
,
N.
,
Kakade
,
P. P.
, and
Annapragada
,
A. V.
,
2003
, “
Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
374
390
.10.1114/1.1560632
33.
Barth
,
T. J.
, and
Jespersen
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 89-0366.10.2514/6.89-0366
34.
Mei
,
Y.
, and
Guha
,
A.
,
2005
, “
Implicit Numerical Simulation of Transonic Flow Through Turbine Cascades on Unstructured Grids
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
1
), pp.
35
47
.10.1243/095765005X6926
35.
Kang
,
M. Y.
,
Hwang
,
J.
, and
Lee
,
J. W.
,
2011
, “
Effect of Geometric Variations on Pressure Loss for a Model Bifurcation of the Human Lung Airway
,”
J. Biomech.
,
44
(
6
), pp.
1196
1199
.10.1016/j.jbiomech.2011.02.011
36.
Zhang
,
C. H.
,
Liu
,
Y.
,
So
,
R. M. C.
, and
Phan-Thien
,
N.
,
2002
, “
The Influence of Inlet Velocity Profile on Three-Dimensional Three-Generation Bifurcating Flows
,”
Comput. Mech.
,
29
(
4–5
), pp.
422
429
.10.1007/s00466-002-0352-9
You do not currently have access to this content.