Abstract

This paper demonstrates a new method for assessing total cardiovascular stiffness using the following five hemodynamic parameters gathered during a routine echocardiogram: (1) left ventricular stroke volume, (2) left ventricular ejection period, (3) heart rate, (4) systolic blood pressure, and (5) diastolic blood pressure. This study uses eight volunteer patients undergoing a routine echocardiogram at the University of Missouri Hospitals. Pulse wave velocity (PWV) data was taken immediately after the echocardiogram and compared to the cardiovascular stiffness result obtained from the echocardiogram data. The R2 value for this comparison was 0.8499 which shows a good correlation. We hypothesize that our new method for assessing total cardiovascular stiffness may be considered equivalent to that of the PWV method.

References

1.
Lee
,
G. P.
, and
Kim
,
H. L.
,
2022
, “
Incremental Value of the Measures of Arterial Stiffness in Cardiovascular Risk Assessment
,”
Rev. Cardiovasc. Med.
,
23
(
1
), p.
1
.10.31083/j.rcm2301006
2.
Spronck
,
B.
,
Obeid
,
M. J.
,
Paravathaneni
,
M.
,
Gadela
,
N. V.
,
Singh
,
G.
,
Magro
,
C. A.
,
Kulkarni
,
V.
, et al.,
2022
, “
Predictive Ability of Pressure-Corrected Arterial Stiffness Indices: Comparison of Pulse Wave Velocity, Cardio-Ankle Vascular Index (CAVI), and CAVI0
,”
Am. J. Hypertens.
,
35
(
3
), pp.
272
280
.10.1093/ajh/hpab168
3.
Benetos
,
A.
,
Adamopoulos
,
C.
,
Bureau
,
J. M.
,
Temmar
,
M.
,
Labat
,
C.
,
Bean
,
K.
, et al.,
2002
, “
Determinants of Accelerated Progression of Arterial Stiffness in Normotensive Subjects and in Treated Hypertensive Subjects Over a 6-Year Period
,”
Circulation
,
105
(
10
), pp.
1202
1207
.10.1161/hc1002.105135
4.
Mynard
,
J. P.
, and
Clarke
,
M. M.
,
2019
, “
Arterial Stiffness, Exercise Capacity and Cardiovascular Risk
,”
Heart Lung Circ.
,
28
(
11
), pp.
1609
1611
.10.1016/j.hlc.2019.09.002
5.
Shirwany
,
N. A.
, and
Zou
,
M. H.
,
2010
, “
Arterial Stiffness: A Brief Review
,”
Acta Pharmacol. Sin.
,
31
(
10
), pp.
1267
1276
.10.1038/aps.2010.123
6.
Kass
,
D. A.
,
Shapiro
,
E. P.
,
Kawaguchi
,
M.
,
Capriotti
,
A. R.
,
Scuteri
,
A.
,
DeGroof
,
R. C.
, and
Lakatta
,
E. G.
,
2001
, “
Improved Arterial Compliance by a Novel Advanced Glycation End-Product Crosslink Breaker
,”
Circulation
,
104
(
13
), pp.
1464
1470
.10.1161/hc3801.097806
7.
Soukup
,
L.
,
Jurak
,
P.
,
Halamek
,
J.
,
Viscor
,
I.
,
Matejkova
,
M.
,
Leinveber
,
P.
, and
Vondra
,
V.
,
2022
, “
Arterial Aging Best Reflected in Pulse Wave Velocity Measured From Neck to Lower Limbs: A Whole-Body Multichannel Bioimpedance Study
,”
Sensors (Basel, Switzerland)
,
22
(
5
), p.
1910
.10.3390/s22051910
8.
Blacher
,
J.
,
Asmar
,
R.
,
Djane
,
S.
,
London
,
G. M.
, and
Safar
,
M. E.
,
1999
, “
Aortic Pulse Wave Velocity as a Marker of Cardiovascular Risk in Hypertensive Patients.
,”
Hypertension
,
33
(
5
), pp.
1111
1117
.10.1161/01.HYP.33.5.1111
9.
Laurent
,
S.
,
Boutouyrie
,
P.
,
Asmar
,
R.
,
Gautier
,
I.
,
Laloux
,
B.
,
Guize
,
L.
,
Ducimetiere
,
P.
, and
Benetos
,
A.
,
2001
, “
Aortic Stiffness is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients
,”
Hypertension.
,
37
(
5
), pp.
1236
1241
.10.1161/01.HYP.37.5.1236
10.
Vlachopoulos
,
C.
,
Aznaouridis
,
K.
, and
Stefanadis
,
C.
,
2010
, “
Prediction of Cardiovascular Events and All-Cause Mortality With Arterial Stiffness. A Systematic Review and Meta-Analysis
,”
J. Am. Coll. Cardiol.
,
55
(
13
), pp.
1318
1327
.10.1016/j.jacc.2009.10.061
11.
Nichols
,
W. W.
,
2005
, “
Clinical Measurement of Arterial Stiffness Obtained From Noninvasive Pressure Waveforms
,”
Am. J. Hypertens.
,
18
(
1
), pp.
3
10
.10.1016/j.amjhyper.2004.10.009
12.
Mitchell
,
G. F.
,
Hwang
,
S. J.
,
Vasan
,
R. S.
,
Larson
,
M. G.
,
Pencina
,
M. J.
,
Hamburg
,
N. M.
,
Vita
,
J. A.
,
Levy
,
D.
, and
Benjamin
,
E. J.
,
2010
, “
Arterial Stiffness and Cardiovascular Events: The Framingham Heart Study
,”
Circulation
,
121
(
4
), pp.
505
511
.10.1161/CIRCULATIONAHA.109.886655
13.
Segers
,
P.
,
Rietzschel
,
E. R.
,
De Buyzere
,
M. L.
,
Vermeersch
,
S. J.
,
De Bacquer
,
D.
,
Van Bortel
,
L. M.
,
De Backer
,
G.
,
Gillebert
,
T. C.
, and
Verdonck
,
P. R.
,
2007
, “
Noninvasive (Input) Impedance, Pulse Wave Velocity, and Wave Reflection in Healthy Middle-Aged Men and Women
,”
Hypertension
,
49
(
6
), pp.
1248
1255
.10.1161/HYPERTENSIONAHA.106.085480
14.
McEniery
,
C. M.
,
Hall
,
I. R.
,
Qasem
,
A.
,
Wilkinson
,
I. B.
,
Cockcroft
.,
J. R.
, and
Yasmin
,
2005
, “
Normal Vascular Aging: Differential Effects on Wave Reflection and Aortic Pulse Wave Velocity - The Anglo-Cardiff Collaborative Trial (ACCT)
,”
J. Am. Coll. Cardiol.
,
46
(
9
), pp.
1753
1760
.10.1016/j.jacc.2005.07.037
15.
Lemogoum
,
D.
,
Flores
,
G.
,
Van den Abeele
,
W.
,
Ciarka
,
A.
,
Leeman
,
M.
,
Degaute
,
J. P.
,
van de Borne
,
P.
, and
Van Bortel
,
L.
,
2004
, “
Validity of Pulse Pressure and Augmentation Index as Surrogate Measures of Arterial Stiffness During Beta-Adrenergic Stimulation
,”
J. Hypertens.
,
22
(
3
), pp.
511
517
.10.1097/00004872-200403000-00013
16.
Mattace-Raso
,
F. U.
,
van der Cammen
,
T. J.
,
Hofman
,
A.
,
van Popele
,
N. M.
,
Bos
,
M. L.
,
Schalekamp
,
M. A.
,
Asmar
,
R.
, et al.,
2006
, “
Arterial Stiffness and Risk of Coronary Heart Disease and Stroke: The Rotterdam Study
,”
Circulation
,
113
(
5
), pp.
657
663
.10.1161/CIRCULATIONAHA.105.555235
17.
Mikael
,
L. R.
,
Paiva
,
A. M. G.
,
Gomes
,
M. M.
,
Sousa
,
A. L. L.
,
Jardim
,
P. C. B. V.
,
Vitorino
,
P. V. O.
,
Euzébio
,
M. B.
,
Sousa
,
W. M.
, and
Barroso
,
W. K. S.
,
2017
, “
Vascular Aging and Arterial Stiffness
,”
Arquivos Brasil. Cardiol.
,
109
(
3
), pp.
253
258
.10.5935/abc.20170091
18.
Segers
,
P.
,
Kips
,
J.
,
Trachet
,
B.
,
Swillens
,
A.
,
Vermeersch
,
S.
,
Mahieu
,
D.
,
Rietzschel
,
E.
,
De Buyzere
,
M.
, and
Van Bortel
,
L.
,
2009
, “
Limitations and Pitfalls of Non-Invasive Measurement of Arterial Pressure Wave Reflections and Pulse Wave Velocity
,”
Artery Res.
,
3
(
2
), pp.
79
88
.10.1016/j.artres.2009.02.006
19.
Baulmann
,
J.
,
Dörr
,
M.
,
Genzel
,
E.
,
Stäuber
,
A.
,
Richter
,
S.
,
Ohlow
,
M.
, and
Eckert
,
S.
,
2022
, “
Feasibility of Calculating Aortic Pulse Wave Velocity From Oscillometric Upper Arm Pulse Waves Using the Antares Algorithm
,”
Artery Res.
,
28
(
1
), pp.
1
8
.10.1007/s44200-021-00009-3
20.
Escudero
,
C. A.
,
Potts
,
J. E.
,
Lam
,
P. Y.
,
De Souza
,
A. M.
,
Mugford
,
G. J.
, and
Sandor
,
G. G. S.
,
2018
, “
Doppler Echocardiography Assessment of Aortic Stiffness in Female Adolescents With Anorexia Nervosa
,”
J. Am. Soc. Echocardiography
,
31
(
7
), pp.
784
790
.10.1016/j.echo.2018.01.003
21.
Styczynski
,
G.
,
Rdzanek
,
A.
,
Pietrasik
,
A.
,
Kochman
,
J.
,
Huczek
,
Z.
,
Sobieraj
,
P.
,
Gaciong
,
Z.
, and
Szmigielski
,
C.
,
2016
, “
Echocardiographic Assessment of Aortic Pulse-Wave Velocity: Validation Against Invasive Pressure Measurements
,”
J. Am. Soc. Echocardiography
,
29
(
11
), pp.
1109
1116
.10.1016/j.echo.2016.07.013
22.
Alhuzaimi
,
A.
,
Al Mashham
,
Y.
,
Potts
,
J. E.
,
De Souza
,
A. M.
, and
Sandor
,
G. G. S.
,
2013
, “
Echo-Doppler Assessment of Arterial Stiffness in Pediatric Patients With Kawasaki Disease
,”
J. Am. Soc. Echocardiography
,
26
(
9
), pp.
1084
1089
.10.1016/j.echo.2013.05.015
23.
Oh
,
Y. S.
,
Berkowitz
,
D. E.
,
Cohen
,
R. A.
,
Figueroa
,
C. A.
,
Harrison
,
D. G.
,
Humphrey
,
J. D.
,
Larson
,
D. F.
, et al.,
2017
, “
A Special Report on the NHLBI Initiative to Study Cellular and Molecular Mechanisms of Arterial Stiffness and Its Association With Hypertension
,”
Circ. Res.
,
121
(
11
), pp.
1216
1218
.10.1161/CIRCRESAHA.117.311703
24.
Moco
,
A. V.
,
Mondragon
,
L. Z.
,
Wang
,
W.
,
Stuijk
,
S.
, and
De Haan
,
G.
,
2017
, “
Camera-Based Assessment of Arterial Stiffness and Wave Reflection Parameters From Neck Micro-Motion
,”
Physiol. Meas.
,
38
(
8
), pp.
1576
1598
.10.1088/1361-6579/aa7d43
25.
Tavallali
,
P.
,
Razavi
,
M.
, and
Pahlevan
,
N. M.
,
2018
, “
Artificial Intelligence Estimation of Carotid-Femoral Pulse Wave Velocity Using Carotid Waveform
,”
Sci. Rep.
,
8
(
1
), p.
1014
.10.1038/s41598-018-19457-0
26.
Ershova
,
A. I.
,
Meshkov
,
A. N.
,
Rozhkova
,
T. A.
,
Kalinina
,
M. V.
,
Deev
,
A. D.
,
Rogoza
,
A. N.
,
Balakhonova
,
T. V.
, and
Boytsov
,
S. A.
,
2016
, “
Carotid and Aortic Stiffness in Patients With Heterozygous Familial Hypercholesterolemia
,”
PLoS One
,
11
(
7
), p.
e0158964
.10.1371/journal.pone.0158964
27.
Hrabak-Paar
,
M.
,
Kircher
,
A.
,
Al Sayari
,
S.
,
Kopp
,
S.
,
Santini
,
F.
,
Schmieder
,
R. E.
,
Kachenoura
,
N.
, et al.,
2020
, “
Variability of MRI Aortic Stiffness Measurements in a Multicenter Clinical Trial Setting: Intraobserver, Interobserver, and Intracenter Variability of Pulse Wave Velocity and Aortic Strain Measurement
,”
Radiol. Cardiothorac. Imaging
,
2
(
2
), p.
e190090
.10.1148/ryct.2020190090
28.
Scudder
,
M. R.
,
Jennings
,
J. R.
,
DuPont
,
C. M.
,
Lockwood
,
K. G.
,
Gadagkar
,
S. H.
,
Best
,
B.
,
Jasti
,
S. P.
, and
Gianaros
,
P. J.
,
2021
, “
Dual Impedance Cardiography: An Inexpensive and Reliable Method to Assess Arterial Stiffness
,”
Psychophysiology
,
58
(
7
), p.
e13772
.10.1111/psyp.13772
29.
Fok
,
H.
,
Guilcher
,
A.
,
Li
,
Y.
,
Brett
,
S.
,
Shah
,
A.
,
Clapp
,
B.
, and
Chowienczyk
,
P.
,
2014
, “
Augmentation Pressure is Influenced by Ventricular Contractility/Relaxation Dynamics Novel Mechanism of Reduction of Pulse Pressure by Nitrates
,”
Hypertension
,
63
(
5
), pp.
1050
1055
.10.1161/HYPERTENSIONAHA.113.02955
30.
Manring
,
N. D.
, and
Al-Toki
,
M. H.
,
2020
, “
Two Methods to Assess Aortic Compliance Using Blood Pressure and Pulse Wave Velocity
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
3
(
4
), p.
044501
.10.1115/1.4047575
31.
Armstrong
,
W. F.
, and
Ryan
,
T.
,
2018
,
Feigenbaum's Echocardiography
, 8th ed.,
Wolters Kluwer Health
, Philadelphia, PA, p.
1451194277
.
You do not currently have access to this content.