Abstract

Globally, breast cancer (BC) remains a significant cause to female mortality. Early detection of BC plays an important role in reducing premature deaths. Various imaging techniques including ultrasound, mammogram, magnetic resonance imaging, histopathology, thermography, positron emission tomography, and microwave imaging have been employed for obtaining breast images (BIs). This review provides comprehensive information of different breast imaging modalities and publicly accessible BI sources. The advanced machine learning (ML) techniques offer a promising avenue to replace human involvement in detecting cancerous cells from BIs. The article outlines various ML algorithms (MLAs) which have been extensively used for identifying cancerous cells in BIs at the early stages, categorizing them based on the presence or absence of malignancy. Additionally, the review addresses current challenges associated with the application of MLAs in BC identification and proposes potential solutions.

References

1.
Sung
,
H.
,
Ferlay
,
J.
,
Siegel
,
R. L.
,
Laversanne
,
M.
,
Soerjomataram
,
I.
,
Jemal
,
A.
, and
Bray
,
F.
,
2021
, “
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
,”
CA. Cancer J. Clin.
,
71
(
3
), pp.
209
249
.10.3322/caac.21660
2.
Din
,
N. M. U.
,
Dar
,
R. A.
,
Rasool
,
M.
, and
Assad
,
A.
,
2022
, “
Breast Cancer Detection Using Deep Learning: Datasets, Methods, and Challenges Ahead
,”
Comput. Biol. Med.
,
149
, p.
106073
.10.1016/j.compbiomed.2022.106073
3.
Madani
,
M.
,
Behzadi
,
M. M.
, and
Nabavi
,
S.
,
2022
, “
The Role of Deep Learning in Advancing Breast Cancer Detection Using Different Imaging Modalities: A Systematic Review
,”
Cancers
,
14
(
21
), p.
5334
.10.3390/cancers14215334
4.
Shokrollahi
,
Y.
,
Yarmohammadtoosky
,
S.
,
Nikahd
,
M. M.
,
Dong
,
P.
,
Li
,
X.
, and
Gu
,
L.
,
2023
, “
A Comprehensive Review of Generative AI in Healthcare
,”
arXiv:2310.00795
.10.48550/arXiv.2310.00795
5.
Chowdhury
,
N. A.
,
Wang
,
L.
,
Islam
,
M. S.
,
Gu
,
L.
, and
Kaya
,
M.
,
2024
, “
Modeling of a Hexagonal Microstrip Patch Antenna for Breast Cancer Detection
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
7
(
3
), p.
031007
.10.1115/1.4064068
6.
Müller
,
A. C.
, and
Guido
,
S.
,
2016
, “
Introduction to Machine Learning With Python: A Guide for Data Scientists
,” O'Reilly, Beijing Boston Farnham Sebastopol Tokyo.
7.
Shah
,
C.
,
2023
,
A Hands-on Introduction to Machine Learning
,
Cambridge University Press
,
Cambridge, UK
.
8.
Jiang
,
H.
,
2021
,
Machine Learning Fundamentals: A Concise Introduction
,
Cambridge University Press
,
UK; New York
.
9.
Yue
,
W.
,
Wang
,
Z.
,
Chen
,
H.
,
Payne
,
A.
, and
Liu
,
X.
,
2018
, “
Machine Learning With Applications in Breast Cancer Diagnosis and Prognosis
,”
Designs
,
2
(
2
), p.
13
.10.3390/designs2020013
10.
O'Brien
,
W. D.
,
2007
, “
Ultrasound–Biophysics Mechanisms
,”
Prog. Biophys. Mol. Biol.
,
93
(
1–3
), pp.
212
255
.10.1016/j.pbiomolbio.2006.07.010
11.
Schousboe
,
J. T.
,
Kerlikowske
,
K.
,
Loh
,
A.
, and
Cummings
,
S. R.
,
2011
, “
Personalizing Mammography by Breast Density and Other Risk Factors for Breast Cancer: Analysis of Health Benefits and Cost-Effectiveness
,”
Ann. Intern. Med.
,
155
(
1
), p.
10
.10.7326/0003-4819-155-1-201107050-00003
12.
Berger
,
A.
,
2002
, “
How Does It Work? Magnetic Resonance Imaging
,”
BMJ
,
324
(
7328
), pp.
35
35
.10.1136/bmj.324.7328.35
13.
Mankoff
,
D. A.
,
Eary
,
J. F.
,
Link
,
J. M.
,
Muzi
,
M.
,
Rajendran
,
J. G.
,
Spence
,
A. M.
, and
Krohn
,
K. A.
,
2007
, “
Tumor Specific Positron Emission Tomography Imaging in Patients: [18F] Fluorodeoxyglucose and Beyond
,”
Clin. Cancer Res.
,
13
(
12
), pp.
3460
3469
.10.1158/1078-0432.CCR-07-0074
14.
Thirumalaisamy
,
S.
,
Thangavilou
,
K.
,
Rajadurai
,
H.
,
Saidani
,
O.
,
Alturki
,
N.
,
Mathivanan
,
S. K.
,
Jayagopal
,
P.
, and
Gochhait
,
S.
,
2023
, “
Breast Cancer Classification Using Synthesized Deep Learning Model With Metaheuristic Optimization Algorithm
,”
Diagnostics
,
13
(
18
), p.
2925
.10.3390/diagnostics13182925
15.
Park
,
T. Y.
,
Kwon
,
L. M.
,
Hyeon
,
J.
,
Cho
,
B.-J.
, and
Kim
,
B. J.
,
2024
, “
Deep Learning Prediction of Axillary Lymph Node Metastasis in Breast Cancer Patients Using Clinical Implication-Applied Preprocessed CT Images
,”
Curr. Oncol.
,
31
(
4
), pp.
2278
2288
.10.3390/curroncol31040169
16.
Mújica-Vargas
,
D.
,
Matuz-Cruz
,
M.
,
García-Aquino
,
C.
, and
Ramos-Palencia
,
C.
,
2022
, “
Efficient System for Delimitation of Benign and Malignant Breast Masses
,”
Entropy
,
24
(
12
), p.
1775
.10.3390/e24121775
17.
Jannat
,
S.
,
Chowdhury
,
N. A.
,
Mannan
,
A.
, and
Mamun
,
A. A.
,
2022
, “
Ion-Acoustic Rogue Waves in a Multi-Component Plasma Medium
,”
Chin. J. Phys.
,
77
, pp.
2228
2237
.10.1016/j.cjph.2022.01.014
18.
Farajpour
,
A.
, and
Ingman
,
W. V.
,
2023
, “
In-Plane Wave Propagation Analysis of Human Breast Lesions Using a Higher-Order Nonlocal Model and Deep Learning
,”
Mathematics
,
11
(
23
), p.
4804
.10.3390/math11234804
19.
Basheri
,
M.
,
2023
, “
Intelligent Breast Mass Classification Approach Using Archimedes Optimization Algorithm With Deep Learning on Digital Mammograms
,”
Biomimetics
,
8
(
6
), p.
463
.10.3390/biomimetics8060463
20.
Reshan
,
M. S. A.
,
Amin
,
S.
,
Zeb
,
M. A.
,
Sulaiman
,
A.
,
Alshahrani
,
H.
,
Azar
,
A. T.
, and
Shaikh
,
A.
,
2023
, “
Enhancing Breast Cancer Detection and Classification Using Advanced Multi-Model Features and Ensemble Machine Learning Techniques
,”
Life
,
13
(
10
), p.
2093
.10.3390/life13102093
21.
Al-Dhabyani
,
W.
,
Gomaa
,
M.
,
Khaled
,
H.
, and
Fahmy
,
A.
,
2020
, “
Dataset of Breast Ultrasound Images
,”
Data Brief
,
28
, p.
104863
.10.1016/j.dib.2019.104863
22.
Rodrigues
,
P. S.
,
2017
, “
Breast Ultrasound Image
,”
Mendeley Data
,
V1
.10.17632/wmy84gzngw.1
23.
Raghu
,
M.
, and
Hooley
,
R.
,
2014
, “
Breast Ultrasound for the Interventionalist
,”
Tech Vasc. Interv. Radiol.
,
17
(
1
), pp.
16
22
.10.1053/j.tvir.2013.12.004
24.
Obayya
,
M.
,
Haj Hassine
,
S. B.
,
Alazwari
,
S.
,
K. Nour
,
M.
,
Mohamed
,
A.
,
Motwakel
,
A.
,
Yaseen
,
I.
,
Sarwar Zamani
,
A.
,
Abdelmageed
,
A. A.
, and
Mohammed
,
G. P.
,
2022
, “
Aquila Optimizer With Bayesian Neural Network for Breast Cancer Detection on Ultrasound Images
,”
Appl. Sci.
,
12
(
17
), p.
8679
.10.3390/app12178679
25.
Ciritsis
,
A.
,
Rossi
,
C.
,
Eberhard
,
M.
,
Marcon
,
M.
,
Becker
,
A. S.
, and
Boss
,
A.
,
2019
, “
Automatic Classification of Ultrasound Breast Lesions Using a Deep Convolutional Neural Network Mimicking Human Decision-Making
,”
Eur. Radiol.
,
29
(
10
), pp.
5458
5468
.10.1007/s00330-019-06118-7
26.
Jabeen
,
K.
,
Khan
,
M. A.
,
Alhaisoni
,
M.
,
Tariq
,
U.
,
Zhang
,
Y.-D.
,
Hamza
,
A.
,
Mickus
,
A.
, and
Damaševičius
,
R.
,
2022
, “
Breast Cancer Classification From Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion
,”
Sensors
,
22
(
3
), p.
807
.10.3390/s22030807
27.
Pourasad
,
Y.
,
Zarouri
,
E.
,
Salemizadeh Parizi
,
M.
, and
Salih Mohammed
,
A.
,
2021
, “
Presentation of Novel Architecture for Diagnosis and Identifying Breast Cancer Location Based on Ultrasound Images Using Machine Learning
,”
Diagnostics
,
11
(
10
), p.
1870
.10.3390/diagnostics11101870
28.
Sahu
,
A.
,
Das
,
P. K.
, and
Meher
,
S.
,
2024
, “
An Efficient Deep Learning Scheme to Detect Breast Cancer Using Mammogram and Ultrasound Breast Images
,”
Biomed. Signal Process. Control
,
87
, p.
105377
.10.1016/j.bspc.2023.105377
29.
Raza
,
A.
,
Ullah
,
N.
,
Khan
,
J. A.
,
Assam
,
M.
,
Guzzo
,
A.
, and
Aljuaid
,
H.
,
2023
, “
DeepBreastCancerNet: A Novel Deep Learning Model for Breast Cancer Detection Using Ultrasound Images
,”
Appl. Sci.
,
13
(
4
), p.
2082
.10.3390/app13042082
30.
Sirjani
,
N.
,
Ghelich Oghli
,
M.
,
Kazem Tarzamni
,
M.
,
Gity
,
M.
,
Shabanzadeh
,
A.
,
Ghaderi
,
P.
,
Shiri
,
I.
,
Akhavan
,
A.
,
Faraji
,
M.
, and
Taghipour
,
M.
,
2023
, “
A Novel Deep Learning Model for Breast Lesion Classification Using Ultrasound Images: A Multicenter Data Evaluation
,”
Phys. Med.
,
107
, p.
102560
.10.1016/j.ejmp.2023.102560
31.
Zhang
,
S.
,
Liao
,
M.
,
Wang
,
J.
,
Zhu
,
Y.
,
Zhang
,
Y.
,
Zhang
,
J.
,
Zheng
,
R.
,
Lv
,
L.
,
Zhu
,
D.
,
Chen
,
H.
, and
Wang
,
W.
,
2023
, “
Fully Automatic Tumor Segmentation of Breast Ultrasound Images With Deep Learning
,”
J. Appl. Clin. Med. Phys.
,
24
(
1
), p.
e13863
.10.1002/acm2.13863
32.
Misra
,
S.
,
Yoon
,
C.
,
Kim
,
K.
,
Managuli
,
R.
,
Barr
,
R. G.
,
Baek
,
J.
, and
Kim
,
C.
,
2023
, “
Deep Learning‐Based Multimodal Fusion Network for Segmentation and Classification of Breast Cancers Using B‐Mode and Elastography Ultrasound Images
,”
Bioeng. Transl. Med.
,
8
(
6
), p.
e10480
.10.1002/btm2.10480
33.
Gu
,
Y.
,
Xu
,
W.
,
Liu
,
T.
,
An
,
X.
,
Tian
,
J.
,
Ran
,
H.
,
Ren
,
W.
,
Chang
,
C.
,
Yuan
,
J.
, et al.,
2022
, “
Ultrasound-Based Deep Learning in the Establishment of a Breast Lesion Risk Stratification System: A Multicenter Study
,”
Eur. Radiol.
,
33
(
4
), pp.
2954
2964
.10.1007/s00330-022-09263-8
34.
Cruz-Ramos
,
C.
,
García-Avila
,
O.
,
Almaraz-Damian
,
J. A.
,
Ponomaryov
,
V.
,
Reyes-Reyes
,
R.
, and
Sadovnychiy
,
S.
,
2023
, “
Benign and Malignant Breast Tumor Classification in Ultrasound and Mammography Images Via Fusion of Deep Learning and Handcraft Features
,”
Entropy
,
25
(
7
), p.
991
.10.3390/e25070991
35.
Goudarzi
,
S.
,
Whyte
,
J.
,
Boily
,
M.
,
Towers
,
A.
,
Kilgour
,
R. D.
, and
Rivaz
,
H.
,
2023
, “
Segmentation of Arm Ultrasound Images in Breast Cancer-Related Lymphedema: A Database and Deep Learning Algorithm
,”
IEEE Trans. Biomed. Eng.
,
70
(
9
), pp.
2552
2563
.10.1109/TBME.2023.3253646
36.
Xu
,
M.
,
Huang
,
K.
, and
Qi
,
X.
,
2023
, “
A Regional-Attentive Multi-Task Learning Framework for Breast Ultrasound Image Segmentation and Classification
,”
IEEE Access
,
11
, pp.
5377
5392
.10.1109/ACCESS.2023.3236693
37.
Civilibal
,
S.
,
Cevik
,
K. K.
, and
Bozkurt
,
A.
,
2023
, “
A Deep Learning Approach for Automatic Detection, Segmentation and Classification of Breast Lesions From Thermal Images
,”
Expert Syst. Appl.
,
212
, p.
118774
.10.1016/j.eswa.2022.118774
38.
Yu
,
F. H.
,
Miao
,
S. M.
,
Li
,
C. Y.
,
Hang
,
J.
,
Deng
,
J.
,
Ye
,
X. H.
, and
Liu
,
Y.
,
2023
, “
Pretreatment Ultrasound-Based Deep Learning Radiomics Model for the Early Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer
,”
Eur. Radiol.
,
33
(
8
), pp.
5634
5644
.10.1007/s00330-023-09555-7
39.
Zhang
,
M.
,
Xue
,
M.
,
Li
,
S.
,
Zou
,
Y.
, and
Zhu
,
Q.
,
2023
, “
Fusion Deep Learning Approach Combining Diffuse Optical Tomography and Ultrasound for Improving Breast Cancer Classification
,”
Biomed. Opt. Express
,
14
(
4
), p.
1636
.10.1364/BOE.486292
40.
He
,
Q.
,
Yang
,
Q.
, and
Xie
,
M.
,
2023
, “
HCTNet: A Hybrid CNN-Transformer Network for Breast Ultrasound Image Segmentation
,”
Comput. Biol. Med.
,
155
, p.
106629
.10.1016/j.compbiomed.2023.106629
41.
Sunil Srikanth
,
V.
, and
Krithiga
,
S.
,
2023
, “
Pre-Trained Deep Neural Network-Based Computer-Aided Breast Tumor Diagnosis Using ROI Structures
,”
Intell. Autom. Soft Comput.
,
35
(
1
), pp.
63
78
.10.32604/iasc.2023.023474
42.
Ma
,
Z.
,
Qi
,
Y.
,
Xu
,
C.
,
Zhao
,
W.
,
Lou
,
M.
,
Wang
,
Y.
, and
Ma
,
Y.
,
2023
, “
ATFE-Net: Axial Transformer and Feature Enhancement-Based CNN for Ultrasound Breast Mass Segmentation
,”
Comput. Biol. Med.
,
153
, p.
106533
.10.1016/j.compbiomed.2022.106533
43.
Moreira
,
I. C.
,
Amaral
,
I.
,
Domingues
,
I.
,
Cardoso
,
A.
,
Cardoso
,
M. J.
, and
Cardoso
,
J. S.
,
2012
, “
INbreast
,”
Acad. Radiol.
,
19
(
2
), pp.
236
248
.10.1016/j.acra.2011.09.014
44.
Matheus
,
B. R. N.
, and
Schiabel
,
H.
,
2011
, “
Online Mammographic Images Database for Development and Comparison of CAD Schemes
,”
J. Digit. Imaging
,
24
(
3
), pp.
500
506
.10.1007/s10278-010-9297-2
45.
Oliveira
,
J. E. E.
,
Gueld
,
M. O.
,
De Albuquerque Araújo
,
A.
,
Ott
,
B.
, and
Deserno
,
T. M.
,
2008
, Toward a Standard Reference Database for Computer-Aided Mammography,
Proceedings of SPIE - The International Society for Optical Engineering
,
San Diego, CA
, Apr., p.
69151Y
.10.1117/12.770325
46.
Thwin
,
S. M.
,
Malebary
,
S. J.
,
Abulfaraj
,
A. W.
, and
Park
,
H. S.
,
2024
, “
Attention-Based Ensemble Network for Effective Breast Cancer Classification Over Benchmarks
,”
Technologies
,
12
(
2
), p.
16
.10.3390/technologies12020016
47.
Al-Masni
,
M. A.
,
Al-Antari
,
M. A.
,
Park
,
J. M.
,
Gi
,
G.
,
Kim
,
T. Y.
,
Rivera
,
P.
,
Valarezo
,
E.
,
Choi
,
M. T.
, and
Han
,
S. M.
, et al.,
2018
, “
Simultaneous Detection and Classification of Breast Masses in Digital Mammograms Via a Deep Learning YOLO-Based CAD System
,”
Comput. Methods Programs Biomed.
,
157
, pp.
85
94
.10.1016/j.cmpb.2018.01.017
48.
Ismail
,
N. S.
, and
Sovuthy
,
C.
,
2019
, “
Breast Cancer Detection Based on Deep Learning Technique
,” 2019 International UNIMAS STEM 12th Engineering Conference (
EnCon
),
Kuching, Malaysia
, Aug. 28–29, pp.
89
92
.10.1109/EnCon.2019.8861256
49.
Omonigho
,
E. L.
,
David
,
M.
,
Adejo
,
A.
, and
Aliyu
,
S.
,
2020
, “
Breast Cancer:Tumor Detection in Mammogram Images Using Modified AlexNet Deep Convolution Neural Network
,” 2020 International Conference in Mathematics, Computer Engineering and Computer Science (
ICMCECS
),
Ayobo, Ipaja, Lagos, Nigeria
, Mar. 18–21, pp.
1
6
.10.1109/ICMCECS47690.2020.240870
50.
Aguerchi
,
K.
,
Jabrane
,
Y.
,
Habba
,
M.
, and
El Hassani
,
A. H.
,
2024
, “
A CNN Hyperparameters Optimization Based on Particle Swarm Optimization for Mammography Breast Cancer Classification
,”
J. Imaging
,
10
(
2
), p.
30
.10.3390/jimaging10020030
51.
Han
,
J.
,
Hua
,
H.
,
Fei
,
J.
,
Liu
,
J.
,
Guo
,
Y.
,
Ma
,
W.
, and
Chen
,
J.
,
2024
, “
Prediction of Disease-Free Survival in Breast Cancer Using Deep Learning With Ultrasound and Mammography: A Multicenter Study
,”
Clin. Breast Cancer
,
24
(
3
), pp.
215
226
.10.1016/j.clbc.2024.01.005
52.
Karthiga
,
R.
,
Narasimhan
,
K.
,
Chinthaginjala
,
R.
,
Anbazhagan
,
R.
,
Chinnusamy
,
M.
,
Pau
,
G.
,
Satish
,
K.
,
Amirtharajan
,
R.
, and
Abbas
,
M.
,
2024
, “
A Novel Exploratory Hybrid Deep Neural Network to Predict Breast Cancer for Mammography Based on Wavelet Features
,”
Multimed. Tools Appl.
10.1007/s11042-023-18012-y
53.
Velarde
,
O. M.
,
Lin
,
C.
,
Eskreis-Winkler
,
S.
, and
Parra
,
L. C.
,
2024
, “
Robustness of Deep Networks for Mammography: Replication Across Public Datasets
,”
J. Imaging Inform. Med.
,
37
(
2
), pp.
536
546
.10.1007/s10278-023-00943-5
54.
Oza
,
P.
,
Sharma
,
P.
, and
Patel
,
S.
,
2024
, “
Breast Lesion Classification From Mammograms Using Deep Neural Network and Test-Time Augmentation
,”
Neural Comput. Appl.
,
36
(
4
), pp.
2101
2117
.10.1007/s00521-023-09165-w
55.
Verboom
,
S. D.
,
Caballo
,
M.
,
Peters
,
J.
,
Gommers
,
J.
,
Van Den Oever
,
D.
,
Broeders
,
M. J. M.
,
Teuwen
,
J.
, and
Sechopoulos
,
I.
,
2023
, “
Deep Learning-Based Breast Region Segmentation in Raw and Processed Digital Mammograms: Generalization Across Views and Vendors
,”
J. Med. Imaging
,
11
(
1
), p.
014001
.10.1117/1.JMI.11.1.014001
56.
Pesapane
,
F.
,
Trentin
,
C.
,
Ferrari
,
F.
,
Signorelli
,
G.
,
Tantrige
,
P.
,
Montesano
,
M.
,
Cicala
,
C.
,
Virgoli
,
R.
,
D'Acquisto
,
S.
,
Nicosia
,
L.
,
Origgi
,
D.
, and
Cassano
,
E.
,
2023
, “
Deep Learning Performance for Detection and Classification of Microcalcifications on Mammography
,”
Eur. Radiol. Exp.
,
7
(
1
), p.
69
.10.1186/s41747-023-00384-3
57.
Raaj
,
R. S.
,
2023
, “
Breast Cancer Detection and Diagnosis Using Hybrid Deep Learning Architecture
,”
Biomed. Signal Process. Control
,
82
, p.
104558
.10.1016/j.bspc.2022.104558
58.
Tsai
,
H. Y.
,
Kao
,
Y. W.
,
Wang
,
J. C.
,
Tsai
,
T. Y.
,
Chung
,
W. S.
,
Hsu
,
J. S.
,
Hou
,
M. F.
, and
Weng
,
S. F.
,
2023
, “
Multitask Deep Learning on Mammography to Predict Extensive Intraductal Component in Invasive Breast Cancer
,”
Eur. Radiol.
,
34
(
4
), pp.
2593
2604
.10.1007/s00330-023-10254-6
59.
Jabeen
,
K.
,
Khan
,
M. A.
,
Balili
,
J.
,
Alhaisoni
,
M.
,
Almujally
,
N. A.
,
Alrashidi
,
H.
,
Tariq
,
U.
, and
Cha
,
J. H.
,
2023
, “
BC2NetRF: Breast Cancer Classification From Mammogram Images Using Enhanced Deep Learning Features and Equilibrium-Jaya Controlled Regula Falsi-Based Features Selection
,”
Diagnostics
,
13
(
7
), p.
1238
.10.3390/diagnostics13071238
60.
Yurdusev
,
A. A.
,
Adem
,
K.
, and
Hekim
,
M.
,
2023
, “
Detection and Classification of Microcalcifications in Mammograms Images Using Difference Filter and Yolov4 Deep Learning Model
,”
Biomed. Signal Process. Control
,
80
, p.
104360
.10.1016/j.bspc.2022.104360
61.
Rehman
,
S. U.
,
Khan
,
M. A.
,
Masood
,
A.
,
Almujally
,
N. A.
,
Baili
,
J.
,
Alhaisoni
,
M.
,
Tariq
,
U.
, and
Zhang
,
Y. D.
,
2023
, “
BRMI-Net: Deep Learning Features and Flower Pollination-Controlled Regula Falsi-Based Feature Selection Framework for Breast Cancer Recognition in Mammography Images
,”
Diagnostics
,
13
(
9
), p.
1618
.10.3390/diagnostics13091618
62.
Hossain
,
M. B.
,
Nishikawa
,
R. M.
, and
Lee
,
J.
,
2022
, “
Developing Breast Lesion Detection Algorithms for Digital Breast Tomosynthesis: Leveraging False Positive Findings
,”
Med. Phys.
,
49
(
12
), pp.
7596
7608
.10.1002/mp.15883
63.
Salama
,
W. M.
, and
Aly
,
M. H.
,
2021
, “
Deep Learning in Mammography Images Segmentation and Classification: Automated CNN Approach
,”
Alex. Eng. J.
,
60
(
5
), pp.
4701
4709
.10.1016/j.aej.2021.03.048
64.
Meyer
,
C. R.
,
Chenevert
,
T. L.
,
Galbán
,
C. J.
,
Johnson
,
T. D.
,
Hamstra
,
D. A.
,
Rehemtulla
,
A.
, and
Ross
,
B. D.
,
2015
, “
RIDER Breast MRI
,” The Cancer Imaging Archive.10.7937/K9/TCIA.2015.H1SXNUXL
65.
Benjelloun
,
M.
,
Adoui
,
M. E.
,
Larhmam
,
M. A.
, and
Mahmoudi
,
S. A.
,
2018
, “
Automated Breast Tumor Segmentation in DCE-MRI Using Deep Learning
,”
2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech)
,
Brussels, Belgium
, Nov. 26–28, pp.
1
6
.10.1109/CloudTech.2018.8713352
66.
Clark
,
K.
,
Vendt
,
B.
,
Smith
,
K.
,
Freymann
,
J.
,
Kirby
,
J.
,
Koppel
,
P.
,
Moore
,
S.
,
Phillips
,
S.
,
Maffitt
,
D.
,
Pringle
,
M.
,
Tarbox
,
L.
, and
Prior
,
F.
,
2013
, “
The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
,”
J. Digit. Imaging
,
26
(
6
), pp.
1045
1057
.10.1007/s10278-013-9622-7
67.
Romeo
,
V.
,
Kapetas
,
P.
,
Clauser
,
P.
,
Rasul
,
S.
,
Cuocolo
,
R.
,
Caruso
,
M.
,
Helbich
,
T. H.
,
Baltzer
,
P. A. T.
, and
Pinker
,
K.
,
2023
, “
Simultaneous 18F-FDG PET/MRI Radiomics and Machine Learning Analysis of the Primary Breast Tumor for the Preoperative Prediction of Axillary Lymph Node Status in Breast Cancer
,”
Cancers
,
15
(
20
), p.
5088
.10.3390/cancers15205088
68.
Fujioka
,
T.
,
Yashima
,
Y.
,
Oyama
,
J.
,
Mori
,
M.
,
Kubota
,
K.
,
Katsuta
,
L.
,
Kimura
,
K.
,
Yamaga
,
E.
,
Oda
,
G.
,
Nakagawa
,
T.
,
Kitazume
,
Y.
, and
Tateishi
,
U.
,
2021
, “
Deep-Learning Approach With Convolutional Neural Network for Classification of Maximum Intensity Projections of Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging
,”
Magn. Reson. Imaging
,
75
, pp.
1
8
.10.1016/j.mri.2020.10.003
69.
Zhou
,
J.
,
Luo
,
L.
,
Dou
,
Q.
,
Chen
,
H.
,
Chen
,
C.
,
Li
,
G.
,
Jiang
,
Z.
, and
Heng
,
P.
,
2019
, “
Weakly Supervised 3D Deep Learning for Breast Cancer Classification and Localization of the Lesions in MR Images
,”
J. Magn. Reson. Imaging
,
50
(
4
), pp.
1144
1151
.10.1002/jmri.26721
70.
Ibraheem
,
A. M.
,
Rahouma
,
K. H.
, and
Hamed
,
H. F. A.
,
2019
, “
Automatic MRI Breast Tumor Detection Using Discrete Wavelet Transform and Support Vector Machines
,” 2019 Novel Intelligent and Leading Emerging Sciences Conference (
NILES
),
Giza, Egypt
, Oct. 28–30, pp.
88
91
.10.1109/NILES.2019.8909345
71.
Star
,
C. S. P. S.
,
Milton
,
A.
, and
Inbamalar
,
T. M.
,
2024
, “
An Improved Semantic Segmentation for Breast Lesion From Dynamic Contrast Enhanced MRI Images Using Deep Learning
,”
Int. J. Imaging Syst. Technol.
,
34
(
1
), p.
e23026
.10.1002/ima.23026
72.
Cong
,
C.
,
Li
,
X.
,
Zhang
,
C.
,
Zhang
,
J.
,
Sun
,
K.
,
Liu
,
L.
,
Ambale‐Venkatesh
,
B.
,
Chen
,
X.
, and
Wang
,
Y.
,
2024
, “
MRI ‐ Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning
,”
J. Magn. Reson. Imaging
,
59
(
1
), pp.
148
161
.10.1002/jmri.28713
73.
Zheng
,
H.
,
Jian
,
L.
,
Li
,
L.
,
Liu
,
W.
, and
Chen
,
W.
,
2024
, “
Prior CLINICO‐RADIOLOGICAL Features Informed MULTI‐MODAL MR Images Convolution Neural Network: A Novel Deep Learning Framework for Prediction of Lymphovascular Invasion in Breast Cancer
,”
Cancer Med.
,
13
(
3
), p.
e6932
.10.1002/cam4.6932
74.
Wang
,
W.
, and
Wang
,
Y.
,
2023
, “
Deep Learning-Based Modified YOLACT Algorithm on Magnetic Resonance Imaging Images for Screening Common and Difficult Samples of Breast Cancer
,”
Diagnostics
,
13
(
9
), p.
1582
.10.3390/diagnostics13091582
75.
Gao
,
J.
,
Zhong
,
X.
,
Li
,
W.
,
Li
,
Q.
,
Shao
,
H.
,
Wang
,
Z.
,
Dai
,
Y.
,
Ma
,
H.
,
Shi
,
Y.
, et al.,
2023
, “
Attention‐Based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE‐MRI
,”
J. Magn. Reson. Imaging
,
57
(
6
), pp.
1842
1853
.10.1002/jmri.28464
76.
Janse
,
M. H. A.
,
Janssen
,
L. M.
,
Van Der Velden
,
B. H. M.
,
Moman
,
M. R.
,
Wolters‐van Der Ben
,
E. J. M.
,
Kock
,
M. C. J. M.
,
Viergever
,
M. A.
,
Van Diest
,
P. J.
, and
Gilhuijs
,
K. G. A.
,
2023
, “
Deep Learning‐Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi‐Institutional Cohort Study
,”
J. Magn. Reson. Imaging
,
58
(
6
), pp.
1739
1749
.10.1002/jmri.28679
77.
Nadkarni
,
S.
, and
Noronha
,
K.
,
2023
, “
Breast Cancer Detection With Multiparametric Magnetic Resonance Imaging Using Deep Learning
,” 2023 International Conference on Smart Systems for Applications in Electrical Sciences (
ICSSES
),
Tumakuru, India
, July 7–8, pp.
1
5
.10.1109/ICSSES58299.2023.10199470
78.
Yin
,
H.
,
Jiang
,
Y.
,
Xu
,
Z.
,
Jia
,
H.
, and
Lin
,
G.
,
2023
, “
Combined Diagnosis of Multiparametric MRI-Based Deep Learning Models Facilitates Differentiating Triple-Negative Breast Cancer From Fibroadenoma Magnetic Resonance BI-RADS 4 Lesions
,”
J. Cancer Res. Clin. Oncol.
,
149
(
6
), pp.
2575
2584
.10.1007/s00432-022-04142-7
79.
Liu
,
H. Q.
,
Lin
,
S. Y.
,
Song
,
Y. D.
,
Mai
,
S. Y.
,
Yang
,
Y.
,
Chen
,
K.
,
Wu
,
Z.
, and
Zhao
,
H. Y.
,
2022
, “
Machine Learning on MRI Radiomic Features: Identification of Molecular Subtype Alteration in Breast Cancer After Neoadjuvant Therapy
,”
Eur. Radiol.
,
33
(
4
), pp.
2965
2974
.10.1007/s00330-022-09264-7
80.
Furtney
,
I.
,
Bradley
,
R.
, and
Kabuka
,
M. R.
,
2023
, “
Patient Graph Deep Learning to Predict Breast Cancer Molecular Subtype
,”
IEEE/ACM Trans. Comput. Biol. Bioinform.
,
20
(
5
), pp.
3117
3127
.10.1109/TCBB.2023.3290394
81.
Li
,
Y.
,
Fan
,
Y.
,
Xu
,
D.
,
Li
,
Y.
,
Zhong
,
Z.
,
Pan
,
H.
,
Huang
,
B.
,
Xie
,
X.
,
Yang
,
Y.
, and
Liu
,
B.
,
2023
, “
Deep Learning Radiomic Analysis of DCE-MRI Combined With Clinical Characteristics Predicts Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer
,”
Front. Oncol.
,
12
, p.
1041142
.10.3389/fonc.2022.1041142
82.
Khanna
,
P.
,
Sahu
,
M.
,
Kumar Singh
,
B.
, and
Bhateja
,
V.
,
2023
, “
Early Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer MRI Images Using Combined Pre-Trained Convolutional Neural Network and Machine Learning
,”
Measurement
,
207
, p.
112269
.10.1016/j.measurement.2022.112269
83.
Saeedi
,
S.
,
Rezayi
,
S.
,
Keshavarz
,
H.
, and
Niakan Kalhori
,
S. R.
,
2023
, “
MRI-Based Brain Tumor Detection Using Convolutional Deep Learning Methods and Chosen Machine Learning Techniques
,”
BMC Med. Inform. Decis. Making
,
23
(
1
), p.
16
.10.1186/s12911-023-02114-6
84.
Chen
,
M.
,
Kong
,
C.
,
Lin
,
G.
,
Chen
,
W.
,
Guo
,
X.
,
Chen
,
Y.
,
Cheng
,
X.
,
Chen
,
M.
,
Shi
,
C.
,
Xu
,
M.
,
Sun
,
J.
,
Lu
,
C.
, and
Ji
,
J.
,
2023
, “
Development and Validation of Convolutional Neural Network-Based Model to Predict the Risk of Sentinel or Non-Sentinel Lymph Node Metastasis in Patients With Breast Cancer: A Machine Learning Study
,”
eClinicalMed.
,
63
, p.
102176
.10.1016/j.eclinm.2023.102176
85.
Xu
,
Z.
,
Xie
,
Y.
,
Wu
,
L.
,
Chen
,
M.
,
Shi
,
Z.
,
Cui
,
Y.
,
Han
,
C.
,
Lin
,
H.
,
Liu
,
Y.
,
Li
,
P.
,
Chen
,
X.
,
Ding
,
Y.
, and
Liu
,
Z.
,
2023
, “
Using Machine Learning Methods to Assess Lymphovascular Invasion and Survival in Breast Cancer: Performance of Combining Preoperative Clinical and MRI Characteristics
,”
J. Magn. Reson. Imaging
,
58
(
5
), pp.
1580
1589
.10.1002/jmri.28647
86.
Han
,
Z.
,
Wei
,
B.
,
Zheng
,
Y.
,
Yin
,
Y.
,
Li
,
K.
, and
Li
,
S.
,
2017
, “
Breast Cancer Multi-Classification From Histopathological Images With Structured Deep Learning Model
,”
Sci. Rep.
,
7
(
1
), p.
4172
.10.1038/s41598-017-04075-z
87.
Marinelli
,
R. J.
,
Montgomery
,
K.
,
Liu
,
C. L.
,
Shah
,
N. H.
,
Prapong
,
W.
,
Nitzberg
,
M.
,
Zachariah
,
Z. K.
,
Sherlock
,
G. J.
,
Natkunam
,
Y.
,
West
,
R. B.
,
Van De Rijn
,
M.
,
Brown
,
P. O.
, and
Ball
,
C. A.
,
2007
, “
The Stanford Tissue Microarray Database
,”
Nucl. Acids Res.
,
36
, pp.
D871
D877
.10.1093/nar/gkm861
88.
Araújo
,
T.
,
Aresta
,
G.
,
Castro
,
E.
,
Rouco
,
J.
,
Aguiar
,
P.
,
Eloy
,
C.
,
Polónia
,
A.
, and
Campilho
,
A.
,
2017
, “
Classification of Breast Cancer Histology Images Using Convolutional Neural Networks
,”
PLos One
,
12
(
6
), p.
e0177544
.10.1371/journal.pone.0177544
89.
Wolberg
,
W. H.
,
Street
,
W. N.
, and
Mangasarian
,
O. L.
,
1994
, “
Machine Learning Techniques to Diagnose Breast Cancer From Image-Processed Nuclear Features of Fine Needle Aspirates
,”
Cancer Lett.
,
77
(
2–3
), pp.
163
171
.10.1016/0304-3835(94)90099-X
90.
Ehteshami Bejnordi
,
B.
,
Veta
,
M.
,
Johannes Van Diest
,
P.
,
Van Ginneken
,
B.
,
Karssemeijer
,
N.
,
Litjens
,
G.
,
Van Der Laak
,
J. A. W. M.
,
Hermsen
,
M.
,
Manson
,
Q. F.
, et al.,
2017
, “
Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
,”
JAMA
,
318
(
22
), p.
2199
.10.1001/jama.2017.14585
91.
Lundin
,
M.
,
Lundin
,
J.
,
Helin
,
H.
, and
Isola
,
J.
,
2004
, “
A Digital Atlas of Breast Histopathology: An Application of Web Based Virtual Microscopy
,”
J. Clin. Pathol.
,
57
(
12
), pp.
1288
1291
.10.1136/jcp.2004.018739
92.
Sharma
,
S.
,
Kumar
,
S.
,
Sharma
,
M.
, and
Kalkal
,
A.
,
2024
, “
An Ensemble of Deep CNNs for Automatic Grading of Breast Cancer in Digital Pathology Images
,”
Neural Comput. Appl.
,
36
(
11
), pp.
5673
5693
.10.1007/s00521-023-09368-1
93.
Rafiq
,
A.
,
Chursin
,
A.
,
Awad Alrefaei
,
W.
,
Rashed Alsenani
,
T.
,
Aldehim
,
G.
,
Abdel Samee
,
N.
, and
Menzli
,
L. J.
,
2023
, “
Detection and Classification of Histopathological Breast Images Using a Fusion of CNN Frameworks
,”
Diagnostics
,
13
(
10
), p.
1700
.10.3390/diagnostics13101700
94.
Aresta
,
G.
,
Araújo
,
T.
,
Kwok
,
S.
,
Chennamsetty
,
S. S.
,
Safwan
,
M.
,
Alex
,
V.
,
Marami
,
B.
,
Prastawa
,
M.
,
Chan
,
M.
, et al.,
2019
, “
BACH: Grand Challenge on Breast Cancer Histology Images
,”
Med. Image Anal.
,
56
, pp.
122
139
.10.1016/j.media.2019.05.010
95.
Kode
,
H.
, and
Barkana
,
B. D.
,
2023
, “
Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images
,”
Cancers
,
15
(
12
), p.
3075
.10.3390/cancers15123075
96.
Bayramoglu
,
N.
,
Kannala
,
J.
, and
Heikkila
,
J.
,
2016
, “
Deep Learning for Magnification Independent Breast Cancer Histopathology Image Classification
,” 23rd International Conference on Pattern Recognition (
ICPR
),
Cancun, Mexico
, Dec. 4–8, pp.
2440
2445
.10.1109/ICPR.2016.7900002
97.
Hameed
,
Z.
,
Zahia
,
S.
,
Garcia-Zapirain
,
B.
,
Javier Aguirre
,
J.
, and
María Vanegas
,
A.
,
2020
, “
Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models
,”
Sensors
,
20
(
16
), p.
4373
.10.3390/s20164373
98.
Burçak
,
K. C.
,
Baykan
,
Ö. K.
, and
Uğuz
,
H.
,
2021
, “
A New Deep Convolutional Neural Network Model for Classifying Breast Cancer Histopathological Images and the Hyperparameter Optimization of the Proposed Model
,”
J. Supercomput.
,
77
(
1
), pp.
973
989
.10.1007/s11227-020-03321-y
99.
Addo
,
D.
,
Zhou
,
S.
,
Sarpong
,
K.
,
Nartey
,
O. T.
,
Abdullah
,
M. A.
,
Ukwuoma
,
C. C.
, and
Al-Antari
,
M. A.
,
2024
, “
A Hybrid Lightweight Breast Cancer Classification Framework Using Histopathological Images
,”
Biocybern. Biomed. Eng.
,
44
(
1
), pp.
31
54
.10.1016/j.bbe.2023.12.003
100.
Wang
,
P.
,
Yang
,
G.
,
Li
,
Y.
,
Li
,
P.
,
Guo
,
Y.
, and
Chen
,
R.
,
2024
, “
Deep Sample Clustering Domain Adaptation for Breast Histopathology Image Classification
,”
Biomed. Signal Process. Control
,
87
, p.
105500
.10.1016/j.bspc.2023.105500
101.
Karuppasamy
,
A.
,
Abdesselam
,
A.
,
Hedjam
,
R.
,
Zidoum
,
H.
, and
Al-Bahri
,
M.
,
2024
, “
Feed-Forward Networks Using Logistic Regression and Support Vector Machine for Whole-Slide Breast Cancer Histopathology Image Classification
,”
Intell. Based Med.
,
9
, p.
100126
.10.1016/j.ibmed.2023.100126
102.
Zarif
,
S.
,
Abdulkader
,
H.
,
Elaraby
,
I.
,
Alharbi
,
A.
,
Elkilani
,
W. S.
, and
Pławiak
,
P.
,
2024
, “
Using Hybrid Pre-Trained Models for Breast Cancer Detection
,”
PLos One
,
19
(
1
), p.
e0296912
.10.1371/journal.pone.0296912
103.
Fisher
,
T. B.
,
Saini
,
G.
,
Rekha
,
T. S.
,
Krishnamurthy
,
J.
,
Bhattarai
,
S.
,
Callagy
,
G.
,
Webber
,
M.
,
Janssen
,
E. A. M.
,
Kong
,
J.
, and
Aneja
,
R.
,
2024
, “
Digital Image Analysis and Machine Learning-Assisted Prediction of Neoadjuvant Chemotherapy Response in Triple-Negative Breast Cancer
,”
Breast Cancer Res.
,
26
(
1
), p.
12
.10.1186/s13058-023-01752-y
104.
Srikantamurthy
,
M. M.
,
Rallabandi
,
V. P. S.
,
Dudekula
,
D. B.
,
Natarajan
,
S.
, and
Park
,
J.
,
2023
, “
Classification of Benign and Malignant Subtypes of Breast Cancer Histopathology Imaging Using Hybrid CNN-LSTM Based Transfer Learning
,”
BMC Med. Imaging
,
23
(
1
), p.
19
.10.1186/s12880-023-00964-0
105.
Zheng
,
Y.
,
Li
,
C.
,
Zhou
,
X.
,
Chen
,
H.
,
Xu
,
H.
,
Li
,
Y.
,
Zhang
,
H.
,
Li
,
X.
,
Sun
,
H.
,
Huang
,
X.
, and
Grzegorzek
,
M.
,
2023
, “
Application of Transfer Learning and Ensemble Learning in Image-Level Classification for Breast Histopathology
,”
Intell. Med.
,
3
(
2
), pp.
115
128
.10.1016/j.imed.2022.05.004
106.
Al-Jabbar
,
M.
,
Alshahrani
,
M.
,
Senan
,
E. M.
, and
Ahmed
,
I. A.
,
2023
, “
Multi-Method Diagnosis of Histopathological Images for Early Detection of Breast Cancer Based on Hybrid and Deep Learning
,”
Mathematics
,
11
(
6
), p.
1429
.10.3390/math11061429
107.
Huang
,
P. W.
,
Ouyang
,
H.
,
Hsu
,
B. Y.
,
Chang
,
Y. R.
,
Lin
,
Y. C.
,
Chen
,
Y. A.
,
Hsieh
,
Y. H.
,
Fu
,
C. C.
,
Li
,
C. F.
, et al.,
2023
, “
Deep-Learning Based Breast Cancer Detection for Cross-Staining Histopathology Images
,”
Heliyon
,
9
(
2
), p.
e13171
.10.1016/j.heliyon.2023.e13171
108.
Su
,
Z.
,
Niazi
,
M. K. K.
,
Tavolara
,
T. E.
,
Niu
,
S.
,
Tozbikian
,
G. H.
,
Wesolowski
,
R.
, and
Gurcan
,
M. N.
,
2023
, “
BCRNet: A Deep Learning Framework to Predict Breast Cancer Recurrence From Histopathology Images
,”
PLos One
,
18
(
4
), p.
e0283562
.10.1371/journal.pone.0283562
109.
Atban
,
F.
,
Ekinci
,
E.
, and
Garip
,
Z.
,
2023
, “
Traditional Machine Learning Algorithms for Breast Cancer Image Classification With Optimized Deep Features
,”
Biomed. Signal Process. Control
,
81
, p.
104534
.10.1016/j.bspc.2022.104534
110.
Obayya
,
M.
,
Maashi
,
M. S.
,
Nemri
,
N.
,
Mohsen
,
H.
,
Motwakel
,
A.
,
Osman
,
A. E.
,
Alneil
,
A. A.
, and
Alsaid
,
M. I.
,
2023
, “
Hyperparameter Optimizer With Deep Learning-Based Decision-Support Systems for Histopathological Breast Cancer Diagnosis
,”
Cancers
,
15
(
3
), p.
885
.10.3390/cancers15030885
111.
Maleki
,
A.
,
Raahemi
,
M.
, and
Nasiri
,
H.
,
2023
, “
Breast Cancer Diagnosis From Histopathology Images Using Deep Neural Network and XGBoost
,”
Biomed. Signal Process. Control
,
86
, p.
105152
.10.1016/j.bspc.2023.105152
112.
Ng
,
Y. E.
,
Ung
,
L. N.
,
Ng
,
F. C.
, and
Sil
,
L. S.
,
2001
, “
Statistical Analysis of Healthy and Malignant Breast Thermography
,”
J. Med. Eng. Technol.
,
25
(
6
), pp.
253
263
.10.1080/03091900110086642
113.
Silva
,
L. F.
,
Saade
,
D. C. M.
,
Sequeiros
,
G. O.
,
Silva
,
A. C.
,
Paiva
,
A. C.
,
Bravo
,
R. S.
, and
Conci
,
A.
,
2014
, “
A New Database for Breast Research With Infrared Image
,”
J. Med. Imaging Health Inform.
,
4
(
1
), pp.
92
100
.10.1166/jmihi.2014.1226
114.
Pérez-Martín
,
J.
, and
Sánchez-Cauce
,
R.
,
2023
, “
Quality Analysis of a Breast Thermal Images Database
,”
Health Inf. J.
,
29
(
1
), p.
146045822311537
.10.1177/14604582231153779
115.
Al-Karawi
,
D.
,
Al-Zaidi
,
S.
,
Helael
,
K. A.
,
Obeidat
,
N.
,
Mouhsen
,
A. M.
,
Ajam
,
T.
,
Alshalabi
,
B. A.
,
Salman
,
M.
, and
Ahmed
,
M. H.
,
2024
, “
A Review of Artificial Intelligence in Breast Imaging
,”
Tomography
,
10
(
5
), pp.
705
726
.10.3390/tomography10050055
116.
Tello-Mijares
,
S.
,
Woo
,
F.
, and
Flores
,
F.
,
2019
, “
Breast Cancer Identification Via Thermography Image Segmentation With a Gradient Vector Flow and a Convolutional Neural Network
,”
J. Healthc. Eng.
,
2019
, pp.
1
13
.10.1155/2019/9807619
117.
Zuluaga-Gomez
,
J.
,
Al Masry
,
Z.
,
Benaggoune
,
K.
,
Meraghni
,
S.
, and
Zerhouni
,
N.
,
2021
, “
A CNN-Based Methodology for Breast Cancer Diagnosis Using Thermal Images
,”
Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
,
9
(
2
), pp.
131
145
.10.1080/21681163.2020.1824685
118.
Kiymet
,
S.
,
Aslankaya
,
M. Y.
,
Taskiran
,
M.
, and
Bolat
,
B.
,
2019
, “
Breast Cancer Detection From Thermography Based on Deep Neural Networks
,” 2019 Innovations in Intelligent Systems and Applications Conference (
ASYU
),
Izmir, Turkey
, Oct. 31–Nov. 2, pp.
1
5
.10.1109/ASYU48272.2019.8946367
119.
Ekici
,
S.
, and
Jawzal
,
H.
,
2020
, “
Breast Cancer Diagnosis Using Thermography and Convolutional Neural Networks
,”
Med. Hypotheses
,
137
, p.
109542
.10.1016/j.mehy.2019.109542
120.
Khomsi
,
Z.
,
Elfezazi
,
M.
, and
Bellarbi
,
L.
,
2024
, “
Deep Learning-Based Approach in Surface Thermography for Inverse Estimation of Breast Tumor Size
,”
Sci. Afr.
,
23
, p.
e01987
.10.1016/j.sciaf.2023.e01987
121.
Chebbah
,
N. K.
,
Ouslim
,
M.
, and
Benabid
,
S.
,
2023
, “
New Computer Aided Diagnostic System Using Deep Neural Network and SVM to Detect Breast Cancer in Thermography
,”
Quant. InfraRed Thermogr. J.
,
20
(
2
), pp.
62
77
.10.1080/17686733.2021.2025018
122.
Gade
,
A.
,
Dash
,
D. K.
,
Kumari
,
T. M.
,
Ghosh
,
S. K.
,
Tripathy
,
R. K.
, and
Pachori
,
R. B.
,
2023
, “
Multiscale Analysis Domain Interpretable Deep Neural Network for Detection of Breast Cancer Using Thermogram Images
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
13
.10.1109/TIM.2023.3317913
123.
Nogales
,
A.
,
Pérez-Lara
,
F.
, and
García-Tejedor
,
Á. J.
,
2023
, “
Enhancing Breast Cancer Diagnosis With Deep Learning and Evolutionary Algorithms: A Comparison of Approaches Using Different Thermographic Imaging Treatments
,”
Multimed. Tools Appl.
,
83
(
14
), pp.
42955
42971
.10.1007/s11042-023-17281-x
124.
Aidossov
,
N.
,
Zarikas
,
V.
,
Zhao
,
Y.
,
Mashekova
,
A.
,
Ng
,
E. Y. K.
,
Mukhmetov
,
O.
,
Mirasbekov
,
Y.
, and
Omirbayev
,
A.
,
2023
, “
An Integrated Intelligent System for Breast Cancer Detection at Early Stages Using IR Images and Machine Learning Methods With Explainability
,”
SN Comput. Sci.
,
4
(
2
), p.
184
.10.1007/s42979-022-01536-9
125.
Tsietso
,
D.
,
Yahya
,
A.
,
Samikannu
,
R.
,
Tariq
,
M. U.
,
Babar
,
M.
,
Qureshi
,
B.
, and
Koubaa
,
A.
,
2023
, “
Multi-Input Deep Learning Approach for Breast Cancer Screening Using Thermal Infrared Imaging and Clinical Data
,”
IEEE Access
,
11
, pp.
52101
52116
.10.1109/ACCESS.2023.3280422
126.
Pramanik
,
R.
,
Pramanik
,
P.
, and
Sarkar
,
R.
,
2023
, “
Breast Cancer Detection in Thermograms Using a Hybrid of GA and GWO Based Deep Feature Selection Method
,”
Expert Syst. Appl.
,
219
, p.
119643
.10.1016/j.eswa.2023.119643
127.
Gupta
,
K. K.
,
Vijay
,
R.
,
Pahadiya
,
P.
,
Saxena
,
S.
, and
Gupta
,
M.
,
2023
, “
Novel Feature Selection Using Machine Learning Algorithm for Breast Cancer Screening of Thermography Images
,”
Wirel. Pers. Commun.
,
131
(
3
), pp.
1929
1956
.10.1007/s11277-023-10527-9
128.
Jha
,
P. D. S.
,
Khalf
,
M. F.
, and
M
,
K.
,
2023
, “
Convolutional Neural Networks for Breast Cancer Detection Using Regions of Interest From Infrared Images
,”
Tamjeed J. Healthc. Eng. Sci. Technol.
,
1
(
2
), pp.
44
53
.10.59785/tjhest.v1i2.25
129.
Hakim
,
A.
, and
Awale
,
R. N.
,
2023
, “
Harnessing the Power of Machine Learning for Breast Anomaly Prediction Using Thermograms
,”
Int. J. Med. Eng. Inform.
,
15
(
1
), p. 1–22.10.1504/IJMEI.2023.127250
130.
Gamal
,
S.
,
Atef
,
H.
,
Youssef
,
D.
,
Ismail
,
T.
, and
El-Azab
,
J.
,
2023
, “
Early Breast Cancer Screening From Thermography Via Deep Pre-Trained Edge Detection With Extreme Gradient Boosting
,” 2023 Intelligent Methods, Systems, and Applications (
IMSA
),
Giza, Egypt
, July 15–16, pp.
430
433
.10.1109/IMSA58542.2023.10217569
131.
Brasileiro
,
F. R. S.
,
Sampaio Neto
,
D. D.
,
Silva Filho
,
T. M.
,
Souza
,
R. M. C. R. D.
, and
Araújo
,
M. C. D.
,
2023
, “
Classifying Breast Lesions in Brazilian Thermographic Images Using Convolutional Neural Networks
,”
Neural Comput. Appl.
,
35
(
26
), pp.
18989
18997
.10.1007/s00521-023-08720-9
132.
Aidossov
,
N.
,
Zarikas
,
V.
,
Mashekova
,
A.
,
Zhao
,
Y.
,
Ng
,
E. Y. K.
,
Midlenko
,
A.
, and
Mukhmetov
,
O.
,
2023
, “
Evaluation of Integrated CNN, Transfer Learning, and BN With Thermography for Breast Cancer Detection
,”
Appl. Sci.
,
13
(
1
), p.
600
.10.3390/app13010600
133.
Ma
,
J.
,
2023
, “
Introducing a Novel Deep Convolutional Neural Network to Detect Skin Cancer in Thermographic Images
,”
J. Opt.
10.1007/s12596-023-01458-6
134.
Mohamed
,
E. A.
,
Rashed
,
E. A.
,
Gaber
,
T.
, and
Karam
,
O.
,
2022
, “
Deep Learning Model for Fully Automated Breast Cancer Detection System From Thermograms
,”
PLos One
,
17
(
1
), p.
e0262349
.10.1371/journal.pone.0262349
135.
Takahashi
,
K.
,
Fujioka
,
T.
,
Oyama
,
J.
,
Mori
,
M.
,
Yamaga
,
E.
,
Yashima
,
Y.
,
Imokawa
,
T.
,
Hayashi
,
A.
,
Kujiraoka
,
Y.
, et al.,
2022
, “
Deep Learning Using Multiple Degrees of Maximum-Intensity Projection for PET/CT Image Classification in Breast Cancer
,”
Tomography
,
8
(
1
), pp.
131
141
.10.3390/tomography8010011
136.
Papandrianos
,
N.
,
Papageorgiou
,
E.
,
Anagnostis
,
A.
, and
Feleki
,
A.
,
2020
, “
A Deep-Learning Approach for Diagnosis of Metastatic Breast Cancer in Bones From Whole-Body Scans
,”
Appl. Sci.
,
10
(
3
), p.
997
.10.3390/app10030997
137.
Gerazov
,
B.
, and
Conceicao
,
R. C.
,
2017
, “
Deep Learning for Tumour Classification in Homogeneous Breast Tissue in Medical Microwave Imaging
,”
IEEE EUROCON 2017 -17th International Conference on Smart Technologies
,
Ohrid, Macedonia, July 6–8
, pp.
564
569
.10.1109/EUROCON.2017.8011175
138.
Duan
,
H.
,
Zhang
,
Y.
,
Qiu
,
H.
,
Fu
,
X.
,
Liu
,
C.
,
Zang
,
X.
,
Xu
,
A.
,
Wu
,
Z.
,
Li
,
X.
, et al.,
2024
, “
Machine Learning-Based Prediction Model for Distant Metastasis of Breast Cancer
,”
Comput. Biol. Med.
,
169
, p.
107943
.10.1016/j.compbiomed.2024.107943
139.
Dinesh
,
P.
,
Vickram
,
A. S.
, and
Kalyanasundaram
,
P.
,
2024
, “
Medical Image Prediction for Diagnosis of Breast Cancer Disease Comparing the Machine Learning Algorithms: SVM, KNN, Logistic Regression, Random Forest and Decision Tree to Measure Accuracy
,”
Contemporary Innovations in Engineering and Management
, Baghdad, Iraq, Nov. 26–27, p.
050001
.10.1149/10701.12681ecst
140.
Das
,
A. K.
,
Biswas
,
S. K.
,
Mandal
,
A.
,
Bhattacharya
,
A.
, and
Sanyal
,
S.
,
2024
, “
Machine Learning Based Intelligent System for Breast Cancer Prediction (MLISBCP)
,”
Expert Syst. Appl.
,
242
, p.
122673
.10.1016/j.eswa.2023.122673
141.
Atrey
,
K.
,
Singh
,
B. K.
, and
Bodhey
,
N. K.
,
2023
, “
Multimodal Classification of Breast Cancer Using Feature Level Fusion of Mammogram and Ultrasound Images in Machine Learning Paradigm
,”
Multimed. Tools Appl.
,
83
(
7
), pp.
21347
21368
.10.1007/s11042-023-16414-6
142.
Rajpoot
,
C. S.
,
Sharma
,
G.
,
Gupta
,
P.
,
Dadheech
,
P.
,
Yahya
,
U.
, and
Aneja
,
N.
,
2024
, “
Feature Selection-Based Machine Learning Comparative Analysis for Predicting Breast Cancer
,”
Appl. Artif. Intell.
,
38
(
1
), p.
2340386
.10.1080/08839514.2024.2340386
143.
Atrey
,
K.
,
Singh
,
B. K.
, and
Bodhey
,
N. K.
,
2024
, “
Integration of Ultrasound and Mammogram for Multimodal Classification of Breast Cancer Using Hybrid Residual Neural Network and Machine Learning
,”
Image Vis. Comput.
,
145
, p.
104987
.10.1016/j.imavis.2024.104987
144.
Ebrahim
,
M.
,
Sedky
,
A. A. H.
, and
Mesbah
,
S.
,
2023
, “
Accuracy Assessment of Machine Learning Algorithms Used to Predict Breast Cancer
,”
Data
,
8
(
2
), p.
35
.10.3390/data8020035
145.
Avcı
,
H.
, and
Karakaya
,
J.
,
2023
, “
A Novel Medical Image Enhancement Algorithm for Breast Cancer Detection on Mammography Images Using Machine Learning
,”
Diagnostics
,
13
(
3
), p.
348
.10.3390/diagnostics13030348
146.
Birchha
,
V.
, and
Nigam
,
B.
,
2023
, “
Performance Analysis of Averaged Perceptron Machine Learning Classifier for Breast Cancer Detection
,”
Procedia Comput. Sci.
,
218
, pp.
2181
2190
.10.1016/j.procs.2023.01.194
147.
De Vries
,
C. F.
,
Colosimo
,
S. J.
,
Staff
,
R. T.
,
Dymiter
,
J. A.
,
Yearsley
,
J.
,
Dinneen
,
D.
,
Boyle
,
M.
,
Harrison
,
D. J.
, et al.,
2023
, “
Impact of Different Mammography Systems on Artificial Intelligence Performance in Breast Cancer Screening
,”
Radiol. Artif. Intell.
,
5
(
3
), p.
e220146
.10.1148/ryai.220146
148.
Taylor
,
C. R.
,
Monga
,
N.
,
Johnson
,
C.
,
Hawley
,
J. R.
, and
Patel
,
M.
,
2023
, “
Artificial Intelligence Applications in Breast Imaging: Current Status and Future Directions
,”
Diagnostics
,
13
(
12
), p.
2041
.10.3390/diagnostics13122041
149.
Shen
,
Y.
,
Heacock
,
L.
,
Elias
,
J.
,
Hentel
,
K. D.
,
Reig
,
B.
,
Shih
,
G.
, and
Moy
,
L.
,
2023
, “
ChatGPT and Other Large Language Models Are Double-Edged Swords
,”
Radiology
,
307
(
2
), p.
e230163
.10.1148/radiol.230163
You do not currently have access to this content.