Abstract

Investigating the dynamic response of human tympanic membranes (TMs) exposed to blasts requires full-field-of-view and three-dimensional (3D) methodologies. Our paper introduces a system that combines high-speed 3D digital image correlation (HS 3D-DIC) and Schlieren imaging (HS-SI) with a custom-designed shock tube for generating blast waves. This integrated system allows us to measure TM surface motions under intense transient loading, capturing full-field-of-view shape deformations exceeding 100 μm with a temporal resolution of 10 μs. System characterization encompasses (i) measuring the shock tube's output levels and repeatability, (ii) assessment of the spatial and temporal resolutions of the imaging techniques, and (iii) identification of overall system limitations. Optimizing these factors is crucial for improving the reliability of our system to ensure the accurate measurement of deformations. To assess our shock tube's reliability in generating repeated blast waves, we instrumented it with high-pressure (HP) and high-frequency (HF) pressure sensors along the blast wave pathway to record overpressure waveforms and compared them with Schlieren imaging visualized blast waves. We validate our HS 3D-DIC measured deformations by comparing them with deformations measured using single-point laser Doppler vibrometry (LDV), establishing a comprehensive assessment of the TM's dynamic response and potential fracture mechanics under blast. Finally, we test our approach with 3D-printed TM-like samples and a real cadaveric human TM. This methodology lays the groundwork for further investigations of blast-related auditory damage and the invention of more effective protective and medical solutions.

References

1.
Frank
,
E. W.
,
Roberge
,
J. Y.
,
Walsh
,
J. C.
, and
Perkoski
,
J. J.
,
2019
, “
Design, Realization, and Application of an Ultra-High-Speed Shock Tube for Middle-Ear Mechanics
,” The Major Qualifying Project, Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, Report No.
CF-IRP-2019
.https://digital.wpi.edu/concern/student_works/hd76s2806?locale=en
2.
Saunders
,
G. H.
, and
Griest
,
S. E.
,
2009
, “
Hearing Loss in Veterans and the Need for Hearing Loss Prevention Programs
,”
Noise Health
,
11
(
42
), pp.
14
21
.10.4103/1463-1741.45308
3.
Holmberg
,
A. D.
,
2010
, “
Development and Characterization of Shock Tubes for Laboratory Scale Blast Wave Simulation
,”
Engineering Mechanics dissertations and theses
, Mechanical and Materials Engineering Department, University of Nebraska, Lincoln, NE.https://digitalcommons.unl.edu/engmechdiss/26/
4.
Cho
,
S.-I.
,
Gao
,
S. S.
,
Xia
,
A.
,
Wang
,
R.
,
Salles
,
F. T.
,
Raphael
,
P. D.
,
Abaya
,
H.
, et al.,
2013
, “
Mechanisms of Hearing Loss After Blast Injury to the Ear
,”
PLoS One
,
8
(
7
), p.
e67618
.10.1371/journal.pone.0067618
5.
Gan
,
R. Z.
,
Nakmali
,
D.
,
Ji
,
X. D.
,
Leckness
,
K.
, and
Yokell
,
Z.
,
2016
, “
Mechanical Damage of Tympanic Membrane in Relation to Impulse Pressure Waveform–A Study in Chinchillas
,”
Hear Res.
,
340
, pp.
25
34
.10.1016/j.heares.2016.01.004
6.
Razavi
,
P.
,
Tang
,
H.
,
Pooladvand
,
K.
,
Ravicz
,
M. E.
,
Remenschneider
,
A.
,
Rosowski
,
J. J.
,
Cheng
,
J. T.
, and
Furlong
,
C.
,
2019
, “
Application of High-Speed DIC to Study Damage of Thin Membranes Under Blast
,”
Dynamic Behavior of Materials, Volume 1: Proceedings of the 2018 Annual Conference on Experimental and Applied Mechanics
, Greenville, SC, June 4–7, pp.
361
367
.10.1007/978-3-319-95089-1_66
7.
Razavi
,
P.
,
Tang
,
H.
,
Pooladvand
,
K.
,
Larson
,
C.
,
Frank
,
E. W.
,
Perkoski
,
J. J.
,
Roberge
,
J. Y.
,
Walsh
,
J. C.
,
Rosowski
,
J. J.
, and
Cheng
,
J. T.
,
2020
, “
3D High-Speed Digital Image Correlation (3D-HSDIC) to Study Damage of Human Eardrum Under High-Pressure Loading
,”
Volume 4: Proceedings of the 2019 Annual Conference on Experimental and Applied Mechanics
, Reno, NV, June 3–6, pp.
57
62
.10.1007/978-3-030-30013-5_10
8.
Alipanahi
,
A.
, Oliveira
Luiz
,
J.
,
Cheng
,
J. T.
,
Rosowski
,
J. J.
, and
Furlong-Vazquez
,
C.
,
2023
, “
Blast Production by a Shock Tube for Use in Studies of Exposure of the Tympanic Membrane to High-Intensity Sounds
,”
Society for Experimental Mechanics Annual Conference and Exposition
, Orlando, FL, June 5–8, pp.
1
8
.10.1007/978-3-031-50499-0_1
9.
Buwono
,
H. K.
, and
Alisjahbana
,
S. W.
,
2020
, “
Modifications Modeling of the Friedlander's Blast Wave Equation Using the 6th Order of Polynomial Equations
,”
Int. J. Civ. Eng.,
11(2), pp.
183
191
.https://iaeme.com/MasterAdmin/Journal_uploads/IJCIET/VOLUME_11_ISSUE_2/IJCIET_11_02_018.pdf
10.
Bokil
,
M.
,
2010
,
Characterization of the Pressure Wave From a Shock Tube Using Numerical
,
The University of Utah
, Salt Lake City, UT.
11.
Huynh
,
D.
,
Gregory
,
J.
, and
Zhuang
,
M.
,
2013
,
Experimental Design of a Shock Tube For the Time Response Study of Porous Pressure-Sensitive Paint
,
The Ohio State University
, Columbus, OH.
12.
Walker
,
J. D. A.
, and
Dennis
,
S. C. R.
,
1972
, “
The Boundary Layer in a Shock Tube
,”
J. Fluid Mech.
,
56
(
1
), pp.
19
47
.10.1017/S0022112072002150
13.
White
,
F. M.
,
Ng
,
C. O.
, and
Saimek
,
S.
,
2011
,
Fluid Mechanics
,
McGraw-Hill, Cop
, New York.
14.
Walker
,
R. I.
,
Cerveny
,
T. J.
, and
Alt
,
L. A.
,
1989
,
Medical Consequences of Nuclear Warfare
, TMM Publications, Falls Church, VA.
15.
Stewart
,
C.
,
Jagoda
,
A.
, and
Howell
,
J. M.
,
2006
, “
Blast Injuries: Preparing for the Inevitable
,”
Emerg. Med. Pract.
,
8
(
4
), pp.
1
28
.https://www.ebmedicine.net/topics/trauma/blast-injury
16.
Baum
,
J. D.
,
Rattigan
,
M. I.
,
Sills
,
E. S.
, and
Walsh
,
A. P. H.
,
2010
, “
Clinical Presentation and Conservative Management of Tympanic Membrane Perforation During Intrapartum Valsalva Maneuver
,”
Case Rep. Med.
,
2010
, pp.
1
3
.10.1155/2010/856045
17.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
18.
Florence
,
A. L.
,
1966
, “
Circular Plate Under a Uniformly Distributed Impulse
,”
Int. J. Solids Struct.
,
2
(
1
), pp.
37
47
.10.1016/0020-7683(66)90005-9
19.
Tasissa
,
A. F.
,
Hautefeuille
,
M.
,
Fitek
,
J. H.
, and
Radovitzky
,
R. A.
,
2016
, “
On the Formation of Friedlander Waves in a Compressed-Gas-Driven Shock Tube
,”
Proc. R. Soc. A
,
472
(
2186
), p.
20150611
.10.1098/rspa.2015.0611
20.
Friedlander
,
F. G.
,
1946
, “
The Diffraction of Sound Pulses I. Diffraction by a Semi-Infinite Plane
,”
Proc. R. Soc. Lond. Ser. A
,
186
(
1006
), pp.
322
344
.10.1098/rspa.1946.0046
21.
Elder
,
F. K.
, Jr.
, and
De Haas
,
N.
,
1952
, “
Experimental Study of the Formation of a Vortex Ring at the Open End of a Cylindrical Shock Tube
,”
J. Appl. Phys.
,
23
(
10
), pp.
1065
1069
.10.1063/1.1701987
22.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
,
Springer Science & Business Media
, New York.
23.
Prisacariu
,
E.
,
Vilag
,
V.
,
Nicoara
,
R.
,
Suciu
,
C.
,
Dobromirescu
,
C.
, and
Dombrovschi
,
M.
, “
Calculating and Setting Up a Schlieren System
,”
TURBO
,
2020
(
2
), pp.
25
34
.https://journals.indexcopernicus.com/api/file/viewByFileId/1230317.pdf
24.
Wakoya Gena
,
A.
,
Becher
,
L.
, and
Voelker
,
C.
,
2022
, “
Sensitivity Analysis of a Large-Scale Schlieren Imaging Setup When Measuring Indoor Airflow
,”
Proceedings of BauSIM2022
, Weimar, Germany, Sept.
20
22
.10.26868/29761662.2022.80
25.
International Digital Image Correlation Society, Jones
,
E. M. C.
, and
Iadicola
,
M. A.
,
2018
, “
A Good Practices Guide for Digital Image Correlation, International Digital Image Correlation Society
,” International Digital Image Correlation Society, Portland, OR, accessed Jan. 4, 2024, https://doi.org/10.32720/idics/gpg.ed1/print.Format
26.
Bruck
,
H. A.
,
McNeill
,
S. R.
,
Sutton
,
M. A.
, and
Peters
,
W. H.
,
1989
, “
Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction
,”
Exp. Mech.
,
29
(
3
), pp.
261
267
.10.1007/BF02321405
27.
Schreier
,
H.
,
Orteu
,
J.-J.
, and
Sutton
,
M. A.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer
, New York.
28.
Orteu
,
J.-J.
,
Bugarin
,
F.
,
Harvent
,
J.
,
Robert
,
L.
, and
Velay
,
V.
,
2011
, “
Multiple-Camera Instrumentation of a Single Point Incremental Forming Process Pilot for Shape and 3D Displacement Measurements: Methodology and Results
,”
Exp. Mech.
,
51
(
4
), pp.
625
639
.10.1007/s11340-010-9436-1
29.
Chen
,
F.
,
Chen
,
X.
,
Xie
,
X.
,
Feng
,
X.
, and
Yang
,
L.
,
2013
, “
Full-Field 3D Measurement Using Multi-Camera Digital Image Correlation System
,”
Opt. Lasers Eng.
,
51
(
9
), pp.
1044
1052
.10.1016/j.optlaseng.2013.03.001
30.
Yu
,
L.
, and
Lubineau
,
G.
,
2019
, “
Modeling of Systematic Errors in Stereo-Digital Image Correlation Due to Camera Self-Heating
,”
Sci. Rep.
,
9
(
1
), p.
6567
.10.1038/s41598-019-43019-7
31.
Paragios
,
N.
,
Chen
,
Y.
, and
Faugeras
,
O. D.
,
2006
,
Handbook of Mathematical Models in Computer Vision
,
Springer, New York
.
32.
Szeliski
,
R.
,
2022
,
Computer Vision: Algorithms and Applications
,
Springer Nature
, London, UK.
33.
Correlated Solutions, 2024, “Calibration Targets,” Correlated Solutions, Irmo, SC, accessed Oct. 9, 2024, https://www.correlatedsolutions.com/accessories-ref/calibration-targets
34.
Alipanahi
,
A.
,
Oliveira Luiz
,
J.
,
Furlong
,
C.
,
Rosowski
,
J.
, and
Cheng
,
J.
,
2024
, “
An Integrated High-Speed 3D-Digital Image Correlation and Schlieren Imaging Methodology for Studying Human Eardrums Exposed to Shock Waves
,”
Society for Experimental Mechanics Annual Conference and Exposition (in Press), Society for Experimental Mechanics Annual Conference and Exposition
, Vancouver, WA, June
3
6
.
35.
Correlated Solutions
,
2021
, “
Vic-3D 8 Manual and Testing Guide
,” Correlated Solutions, Irmo, SC, accessed Oct. 9, 2024, https://correlated.kayako.com/article/57-vic-3d-8-manual-and-testing-guide
36.
Park
,
C.-K.
, and
Kim
,
J.
,
2022
, “
Development of a Three-Dimensional-Printed Heart Model Replicating the Elasticity, Tear Resistance, and Hardness of Pig Heart Using Agilus and Tango
,”
J. Mech. Med. Biol.
,
22
(
3
), p.
2240007
.10.1142/S0219519422400073
37.
Ricci
,
G.
,
Gibelli
,
F.
, and
Sirignano
,
A.
,
2023
, “
Three-Dimensional Bioprinting of Human Organs and Tissues: Bioethical and Medico-Legal Implications Examined Through a Scoping Review
,”
Bioengineering
,
10
(
9
), p.
1052
.10.3390/bioengineering10091052
38.
Stratasys
, 2024, “
Agilus30™
,” Stratasys, Eden Prairie, MN, accessed Oct. 9, 2024, https://www.stratasys.com/en/materials/materials-catalog/polyjet-materials/agilus30/
39.
Stratasys
,
2024
, “
J826TM Prime 3D Printer
,” Stratasys, Eden Prairie, MN, accessed Oct. 9, 2024, https://www.stratasys.com/en/3d-printers/printer-catalog/polyjet/j8-series-printers/j826-prime-3d-printer/
40.
Oliveira Luiz
,
J.
,
Alipanahi
,
A.
,
Furlong
,
C.
,
Rosowski
,
J.
, and
Cheng
,
J.
,
2024
, “
A Parametric Study Using 3D-Printed Samples Simulating Human Eardrums to Investigate the Middle Ear's Responses to High Acoustical Events
,”
Society for Experimental Mechanics Annual Conference and Exposition
, Vancouver, WA, June
3
6
.
41.
Zhu
,
C.
,
Yu
,
S.
,
Liu
,
C.
,
Jiang
,
P.
,
Shao
,
X.
, and
He
,
X.
,
2019
, “
Error Estimation of 3D Reconstruction in 3D Digital Image Correlation
,”
Meas. Sci. Technol.
,
30
(
2
), p.
025204
.10.1088/1361-6501/aaf846
42.
Amiot
,
F.
,
Bornert
,
M.
,
Doumalin
,
P.
,
Dupré
,
J.‐C.
,
Fazzini
,
M.
,
Orteu
,
J.‐J.
,
Poilâne
,
C.
, et al.,
2013
, “
Assessment of Digital Image Correlation Measurement Accuracy in the Ultimate Error Regime: Main Results of a Collaborative Benchmark
,”
Strain
,
49
(
6
), pp.
483
496
.10.1111/str.12054
43.
Chandra
,
N.
,
Ganpule
,
S.
,
Kleinschmit
,
N. N.
,
Feng
,
R.
,
Holmberg
,
A. D.
,
Sundaramurthy
,
A.
,
Selvan
,
V.
, and
Alai
,
A.
,
2012
, “
Evolution of Blast Wave Profiles in Simulated Air Blasts: Experiment and Computational Modeling
,”
Shock Waves
,
22
(
5
), pp.
403
415
.10.1007/s00193-012-0399-2
44.
Reeder
,
E. L.
,
Liber
,
M.-L.
,
Traubert
,
O. D.
,
O'Connell
,
C. J.
,
Turner
,
R. C.
, and
Robson
,
M. J.
,
2022
, “
Effect of Driver Gas Composition on Production of Scaled Friedlander Waveforms in an Open-Ended Shock Tube Model
,”
Biomed. Phys. Eng. Express
,
8
(
6
), p.
065028
.10.1088/2057-1976/ac9abc
45.
Poudel
,
S.
,
Chandrala
,
L.
,
Das
,
D.
, and
De
,
A.
,
2021
, “
Characteristics of Shock Tube Generated Compressible Vortex Rings at Very High Shock Mach Numbers
,”
Phys. Fluids
,
33
(
9
), p.
096105
.10.1063/5.0063164
46.
Zhang
,
H.
,
Chen
,
Z.
,
Li
,
B.
, and
Jiang
,
X.
,
2014
, “
The Secondary Vortex Rings of a Supersonic Underexpanded Circular Jet With Low Pressure Ratio
,”
Eur. J. Mech.-B/Fluids
,
46
, pp.
172
180
.10.1016/j.euromechflu.2014.03.016
47.
Needham
,
C. E.
,
Ritzel
,
D.
,
Rule
,
G. T.
,
Wiri
,
S.
, and
Young
,
L.
,
2015
, “
Blast Testing Issues and TBI: Experimental Models That Lead to Wrong Conclusions
,”
Front. Neurol.
,
6
, p.
123755
.10.3389/fneur.2015.00072
You do not currently have access to this content.