Abstract

Chatter-free machining is necessary in micromilling to avoid the catastrophic failure of micro-end mill. The accuracy of the prediction of chatter-free machining conditions in high-speed micromilling has been improved in this work by including speed-varying micro-end mill dynamics. An optimum design of exponential window has been devised to remove the unwanted spindle dynamics from the displacement signal to construct the speed-dependent frequency response function (FRF) of micro-end mill. The stiffness of the micro-end mill has been found to be increasing with increase in spindle speed and the natural frequency of the micro-end mill has been found to be changing with change in spindle speeds. The cutting velocity-chip load-dependent cutting coefficients have been included to predict the stability using Nyquist criterion. The predicted stability lobe with speed-varying micro-end mill dynamics has increased chatter-free depth of cut significantly compared to the chatter-free depth of cut predicted with static micro-end mill dynamics. The increase in depth of cut with speed-varying dynamics has been found to be 28% at 20,000 rpm, 150% at 52,000 rpm, and 250% at 70,000 rpm. A critical value of acceleration of the workpiece has been identified for chatter onset detection and it has been validated with machined surface image analysis. The magnitude of acceleration in both feed and normal to feed direction has been characterized to analyze the effect of spindle speed and depth of cut on the vibration of workpiece.

References

1.
Chae
,
J.
,
Park
,
S. S.
, and
Freiheit
,
T.
,
2006
, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
313
332
.10.1016/j.ijmachtools.2005.05.015
2.
Tlusty
,
J.
,
1993
, “
High Speed Machining
,”
CIRP Ann.
,
42
(
2
), pp.
733
738
.10.1016/S0007-8506(07)62536-0
3.
Zhang
,
Y. B.
,
Yan
,
G. H.
,
Jing
,
Q.
, and
Li
,
J. Y.
,
2020
, “
Fabrication of Micro-End Milling Cutter Based on WEDG
,”
Procedia CIRP
,
95
, pp.
273
278
.10.1016/j.procir.2020.03.152
4.
Afazov
,
S.
, and
Uzunov
,
K.
,
2021
, “
Comparative Study of Stability Predictions in Micro-Milling by Using Cutting Force Models and Direct Cutting Force Measurements
,”
Procedia CIRP
,
101
, pp.
118
121
.10.1016/j.procir.2021.02.015
5.
Singh
,
K. K.
, and
Singh
,
R.
,
2018
, “
Chatter Stability Prediction in High-Speed Micromilling of Ti6Al4V Via Finite Element Based Micro End Mill Dynamics
,”
Adv. Manuf.
,
6
(
1
), pp.
95
106
.10.1007/s40436-018-0210-4
6.
Deng
,
D. X.
,
Zheng
,
J.
,
Chen
,
X. L.
,
Pi
,
G.
, and
Liu
,
Y. H.
,
2022
, “
Fabrication of Micro Pin Fins on Inclined V-Shaped Microchannel Walls Via Laser Micromilling
,”
Adv. Manuf.
,
10
(
2
), pp.
220
234
.10.1007/s40436-021-00382-x
7.
Afazov
,
S.
,
Ratchev
,
S. M.
,
Segal
,
J.
, and
Popov
,
A. A.
,
2012
, “
Chatter Modelling in Micro-Milling by Considering Process Nonlinearities
,”
Int. J. Mach. Tools Manuf.
,
56
, pp.
28
38
.10.1016/j.ijmachtools.2011.12.010
8.
Jin
,
X.
, and
Altintas
,
Y.
,
2013
, “
Chatter Stability Model of Micro-Milling With Process Damping
,”
J. Manuf. Sci. Eng., Trans. ASME
,
135
(
3
), pp.
1
9
.10.1115/1.4024038
9.
Wang
,
J. J.
,
Uhlmann
,
E.
,
Oberschmidt
,
D.
,
Sung
,
C. F.
, and
Perfilov
,
I.
,
2016
, “
Critical Depth of Cut and Asymptotic Spindle Speed for Chatter in Micro Milling With Process Damping
,”
CIRP Ann.-Manuf. Technol.
,
65
(
1
), pp.
113
116
.10.1016/j.cirp.2016.04.088
10.
Schmitz
,
T. L.
,
Ziegert
,
J. C.
, and
Stanislaus
,
C.
,
2004
, “
A Method for Predicting Chatter Stability for Systems With Speed Dependent Spindle Dynamic
,”
Transaction of North American Manufacturing Research Institution of SME
, University of North Carolina at Charlotte, Vol.
32
, pp.
17
24
.
11.
Cao
,
H.
,
Li
,
B.
, and
He
,
Z.
,
2012
, “
Chatter Stability of Milling With Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
50
58
.10.1016/j.ijmachtools.2011.09.004
12.
Wiederkehr
,
P.
,
Wilck
,
I.
, and
Siebrecht
,
T.
,
2020
, “
Determination of the Dynamic Behaviour of Micro-Milling Tools at Higher Spindle Speeds Using Ball-Shooting Tests for the Application in Process Simulation
,”
CIRP Ann.-Manuf. Technol.
,
69
(
1
), pp.
97
100
.10.1016/j.cirp.2020.04.036
13.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2017
, “
Modeling of Dynamic Instability Via Segmented Cutting Coefficients and Chatter Onset Detection in High-Speed Micromilling of Ti6Al4V
,”
J. Manuf. Sci. Eng., Trans. ASME
,
139
(
5
), pp.
1
13
.10.1115/1.4034897
14.
Bediz
,
B.
, and
Burak
,
O.
,
2019
, “
Rotational Dynamics of Micro-Scale Cutting Tools
,”
Precis. Eng.
,
60
, pp.
1
11
.10.1016/j.precisioneng.2019.07.004
15.
Bediz
,
B.
,
Gozen
,
A. B.
,
Korkmaz
,
E.
, and
Ozdoganlar
,
O. B.
,
2014
, “
Dynamics of Ultra-High-Speed (UHS) Spindles Used for Micromachining
,”
Int. J. Mach. Tools Manuf.
,
87
, pp.
27
38
.10.1016/j.ijmachtools.2014.07.007
16.
Tlusty
,
J.
,
2000
,
Manufacturing Processes and Equipment
,
Prentice Hall
,
Upper Saddle River, NJ
.
17.
Hashemi
,
S. H.
,
Farhadi
,
S.
, and
Carra
,
S.
,
2009
, “
Free Vibration Analysis of Rotating Thick Plates
,”
J. Sound Vib.
,
323
(
1–2
), pp.
366
384
.10.1016/j.jsv.2008.12.007
18.
Shekhar
,
S.
,
Nahata
,
S.
, and
Ozdoganlar
,
O. B.
,
2020
, “
The Effect of Spindle Dynamics on Tool-Tip Radial Throw in Micromachining
,”
J. Manuf. Processes
,
56
(
Part B
), pp.
1397
1403
.10.1016/j.jmapro.2020.04.036
19.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Principles of Metal Cutting and Machine Tool Vibrations
,
Cambridge University Press
,
New York
.
20.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
357
362
.10.1016/S0007-8506(07)62342-7
21.
Kuljanic
,
E.
,
Sortino
,
M.
, and
Totis
,
G.
,
2008
, “
Multisensor Approaches for Chatter Detection in Milling
,”
J. Sound Vib.
,
312
(
4–5
), pp.
672
693
.10.1016/j.jsv.2007.11.006
22.
Singh
,
K. K.
,
Singh
,
R.
, and
Kartik
,
V.
,
2015
, “
Comparative Study of Chatter Detection Methods for High-Speed Micromilling of Ti6Al4V
,”
Procedia Manuf.
,
1
, pp.
593
606
.10.1016/j.promfg.2015.09.040
23.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2015
, “
Modeling Dynamic Stability in High-Speed Micromilling of Ti–6Al–4V Via Velocity and Chip Load Dependent Cutting Coefficients
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
56
66
.10.1016/j.ijmachtools.2015.06.002
24.
Ogata
,
K.
,
1998
,
System Dynamics
, Vol.
3
,
Prentice Hall
,
Upper Saddle River, NJ
.
25.
Wang
,
Q. G.
,
Zhang
,
Z.
,
Astrom
,
K. J.
, and
Chek
,
L. S.
,
2009
, “
Guaranteed Dominant Pole Placement With PID Controllers
,”
J. Process Control
,
19
(
2
), pp.
349
352
.10.1016/j.jprocont.2008.04.012
26.
Faassen
,
R. P. H.
,
Van de Wouw
,
N.
,
Oosterling
,
J. A. J.
, and
Nijmeijer
,
H.
,
2003
, “
Prediction of Regenerative Chatter by Modelling and Analysis of High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
43
(
14
), pp.
1437
1446
.10.1016/S0890-6955(03)00171-8
27.
Sastry
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2002
, “
Floquet Theory Based Approach for Stability Analysis of the Variable Speed Face-Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
10
17
.10.1115/1.1418695
28.
Jayaram
,
S.
,
Kapoor
,
S. G.
, and
De Vor
,
R. E.
,
2000
, “
Analytical Stability Analysis of Variable Spindle Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
391
397
.10.1115/1.1285890
29.
Hall
,
S. R.
, and
Wereley
,
N. M.
,
1990
, “
Generalized Nyquist Stability Criterion for Linear Time Periodic Systems
,”
American Control Conference (ACC)
, San Diego, CA, May 23–25, pp.
1518
1525
.10.23919/ACC.1990.4790991
30.
Eynian
,
M.
,
2010
, “
Chatter Stability of Turning and Milling with Process Damping
,” Doctoral dissertation,
University of British Columbia
,
Vancouver, BC
.
31.
Fladung
,
B.
,
1997
, “
Windows Used for Impact Testing
,”International Modal Analysis Conference-15 (IMAC-XV), Tokyo, Japan, pp.
1662
1666
.
32.
Shi
,
J.
,
Jin
,
X.
, and
Cao
,
H.
,
2022
, “
Chatter Stability Analysis in Micro-Milling With Aerostatic Spindle Considering Speed Effect
,”
Mech. Syst. Signal Process.
,
169
(
108620
), pp.
108620
108621
.10.1016/j.ymssp.2021.108620
You do not currently have access to this content.