Abstract

Porosity is a major quality issue in additively manufactured (AM) materials due to improper selection of raw material or process parameters. While porosity is kept to a minimum for structural applications, parts with intentional (engineered) porosity find applications in prosthetics, sound dampeners, mufflers, catalytic converters, electrodes, heat exchangers, filters, etc. During postprocessing of additive manufactured components using secondary machining to obtain required dimensional tolerance and/or surface quality, part porosity could lead to fluctuating cutting forces and reduced tool life. The machinability of the porous AM material is poor compared to the homogenous wrought material due to the intermittent cutting and anisotropy of AM materials. This paper investigates the tool wear progression and underlying mechanisms in relation to the porosity of AM material during their machining. Micromilling experiments are carried out on AM Ti6Al4V alloy with different porosity levels. Insights into tool-workpiece interaction during micromachining are obtained in cases where pore sizes could be comparable to the cutting tool diameter. Findings of this research could be helpful in developing efficient hybrid additive-subtractive manufacturing technologies with improved tool life and reduced costs.

References

1.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p. 014001.10.1115/1.4028725
2.
Flynn
,
J. M.
,
Shokrani
,
A.
,
Newman
,
S. T.
, and
Dhokia
,
V.
,
2016
, “
Hybrid Additive and Subtractive Machine Tools–Research and Industrial Developments
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
79
101
.10.1016/j.ijmachtools.2015.11.007
3.
Qian
,
M.
,
Xu
,
W.
,
Brandt
,
M.
, and
Tang
,
H.
,
2016
, “
Additive Manufacturing and Postprocessing of Ti-6Al-4V for Superior Mechanical Properties
,”
MRS Bull.
,
41
(
10
), pp.
775
784
.10.1557/mrs.2016.215
4.
Lizzul
,
L.
,
Sorgato
,
M.
,
Bertolini
,
R.
,
Ghiotti
,
A.
, and
Bruschi
,
S.
,
2020
, “
Influence of Additive Manufacturing-Induced Anisotropy on Tool Wear in End Milling of Ti6Al4V
,”
Tribol. Int.
,
146
, p.
106200
.10.1016/j.triboint.2020.106200
5.
Abolghasemi Fakhri
,
M.
,
Bordatchev
,
E. V.
, and
Tutunea-Fatan
,
O. R.
,
2013
, “
Framework for Evaluation of the Relative Contribution of the Process on Porosity–Cutting Force Dependence in Micromilling of Titanium Foams
,”
Proc. Inst. Mech. Eng., Part B
,
227
(
11
), pp.
1635
1650
.10.1177/0954405413491243
6.
Tutunea-Fatan
,
O.
,
Fakhri
,
M. A.
, and
Bordatchev
,
E.
,
2011
, “
Porosity and Cutting Forces: From Macroscale to Microscale Machining Correlations
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
5
), pp.
619
630
.10.1177/2041297510394057
7.
Greco
,
S.
,
Kieren-Ehses
,
S.
,
Kirsch
,
B.
, and
Aurich
,
J. C.
,
2021
, “
Micro Milling of Additively Manufactured AISI 316 L: Impact of the Layerwise Microstructure on the Process Results
,”
Int. J. Adv. Manuf. Technol.
,
112
(
1–2
), pp.
361
373
.10.1007/s00170-020-06387-3
8.
Malakizadi
,
A.
,
Hajali
,
T.
,
Schulz
,
F.
,
Cedergren
,
S.
,
Ålgårdh
,
J.
,
M'Saoubi
,
R.
,
Hryha
,
E.
, and
Krajnik
,
P.
,
2021
, “
The Role of Microstructural Characteristics of Additively Manufactured Alloy 718 on Tool Wear in Machining
,”
Int. J. Mach. Tools Manuf.
,
171
, p.
103814
.10.1016/j.ijmachtools.2021.103814
9.
Dang
,
J.
,
Cai
,
X.
,
Yu
,
D.
,
An
,
Q.
,
Ming
,
W.
, and
Chen
,
M.
,
2020
, “
Effect of Material Microstructure on Tool Wear Behavior During Machining Additively Manufactured Ti6Al4V
,”
Arch. Civ. Mech. Eng.
,
20
(
1
), pp.
1
15
.10.1007/s43452-019-0007-7
10.
Li
,
G.
,
Chandra
,
S.
,
Rashid
,
R. A. R.
,
Palanisamy
,
S.
, and
Ding
,
S.
,
2022
, “
Machinability of Additively Manufactured Titanium Alloys: A Comprehensive Review
,”
J. Manuf. Processes
,
75
, pp.
72
99
.10.1016/j.jmapro.2022.01.007
11.
Khanna
,
N.
,
Zadafiya
,
K.
,
Patel
,
T.
,
Kaynak
,
Y.
,
Rashid
,
R. A. R.
, and
Vafadar
,
A.
,
2021
, “
Review on Machining of Additively Manufactured Nickel and Titanium Alloys
,”
J. Mater. Res. Technol.
,
15
, pp.
3192
3221
.10.1016/j.jmrt.2021.09.088
12.
Guo
,
P.
,
Zou
,
B.
,
Huang
,
C.
, and
Gao
,
H.
,
2017
, “
Study on Microstructure, Mechanical Properties and Machinability of Efficiently Additive Manufactured AISI 316 L Stainless Steel by High-Power Direct Laser Deposition
,”
J. Mater. Process. Technol.
,
240
, pp.
12
22
.10.1016/j.jmatprotec.2016.09.005
13.
Heidari
,
M.
, and
Yan
,
J.
,
2018
, “
Material Removal Mechanism and Surface Integrity in Ultraprecision Cutting of Porous Titanium
,”
Precis. Eng.
,
52
, pp.
356
369
.10.1016/j.precisioneng.2018.01.014
14.
Hu
,
B.
,
Warzel
,
R.
,
Ropar
,
S.
, and
Neilan
,
A.
,
2017
, “
The Effect of Porosity on Machinability of PM Materials
,”
Int. J. Powder Metall.
,
53
(
1
), pp.
27
36
.
15.
Bordin
,
A.
,
Bruschi
,
S.
,
Ghiotti
,
A.
, and
Bariani
,
P.
,
2015
, “
Analysis of Tool Wear in Cryogenic Machining of Additive Manufactured Ti6Al4V Alloy
,”
Wear
,
328–329
, pp.
89
99
.10.1016/j.wear.2015.01.030
16.
Bonaiti
,
G.
,
Parenti
,
P.
,
Annoni
,
M.
, and
Kapoor
,
S.
,
2017
, “
Micro-Milling Machinability of DED Additive Titanium Ti-6AL-4V
,”
Procedia Manuf.
,
10
, pp.
497
509
.10.1016/j.promfg.2017.07.104
17.
Liu
,
Z.
,
Han
,
J.
,
Su
,
Y.
, and
An
,
Q.
,
2018
, “
Experimental Investigation of Porous Metal Materials in High-Speed Micro-Milling Process
,”
Proc. Inst. Mech. Eng., Part B
,
232
(
14
), pp.
2488
2498
.10.1177/0954405417699011
18.
Fei
,
J.
,
Liu
,
G.
,
Patel
,
K.
, and
Özel
,
T.
,
2020
, “
Effects of Machining Parameters on Finishing Additively Manufactured Nickel-Based Alloy Inconel 625
,”
J. Manuf. Mater. Process.
,
4
(
2
), p.
32
.10.3390/jmmp4020032
19.
Varghese
,
V.
, and
Mujumdar
,
S.
,
2021
, “
Micromilling-Induced Surface Integrity of Porous Additive Manufactured Ti6Al4V Alloy
,”
Procedia Manuf.
,
53
, pp.
387
394
.10.1016/j.promfg.2021.06.041
20.
Ahmad
,
S.
,
Mujumdar
,
S.
, and
Varghese
,
V.
,
2022
, “
Role of Porosity in Machinability of Additively Manufactured Ti-6Al-4V
,”
Precis. Eng.
,
76
, pp.
397
406
.10.1016/j.precisioneng.2022.04.010
21.
Le Coz
,
G.
,
Fischer
,
M.
,
Piquard
,
R.
,
D'acunto
,
A.
,
Laheurte
,
P.
, and
Dudzinski
,
D.
,
2017
, “
Micro Cutting of Ti-6Al-4V Parts Produced by Slm Process
,”
Procedia CIRP
,
58
, pp.
228
232
.10.1016/j.procir.2017.03.326
22.
Kaynak
,
Y.
, and
Kitay
,
O.
,
2018
, “
Porosity, Surface Quality, Microhardness and Microstructure of Selective Laser Melted 316 L Stainless Steel Resulting From Finish Machining
,”
J. Manuf. Mater. Process.
,
2
(
2
), p.
36
.10.3390/jmmp2020036
23.
Sartori
,
S.
,
Bordin
,
A.
,
Moro
,
L.
,
Ghiotti
,
A.
, and
Bruschi
,
S.
,
2016
, “
The Influence of Material Properties on the Tool Crater Wear When Machining Ti6Al4V Produced by Additive Manufacturing Technologies
,”
Procedia CIRP
,
46
, pp.
587
590
.10.1016/j.procir.2016.04.032
24.
de Oliveira Campos
,
F.
,
Araujo
,
A. C.
,
Munhoz
,
A. L. J.
, and
Kapoor
,
S. G.
,
2020
, “
The Influence of Additive Manufacturing on the Micromilling Machinability of Ti6Al4V: A Comparison of Slm and Commercial Workpieces
,”
J. Manuf. Processes
,
60
, pp.
299
307
.10.1016/j.jmapro.2020.10.006
25.
Oyelola
,
O.
,
Crawforth
,
P.
,
M'Saoubi
,
R.
, and
Clare
,
A. T.
,
2018
, “
On the Machinability of Directed Energy Deposited Ti6Al4V
,”
Addit. Manuf.
,
19
, pp.
39
50
.10.1016/j.addma.2017.11.005
26.
Alizadeh
,
E.
,
2008
, “
Factors Influencing the Machinability of Sintered Steels
,”
Powder Metall. Met. Ceram.
,
47
(
5–6
), pp.
304
315
.10.1007/s11106-008-9021-7
27.
Schoop
,
J.
,
Jawahir
,
I.
, and
Balk
,
T.
,
2016
, “
Size Effects in Finish Machining of Porous Powdered Metal for Engineered Surface Quality
,”
Precis. Eng.
,
44
, pp.
180
191
.10.1016/j.precisioneng.2015.12.004
28.
Schoop
,
J.
,
Ambrosy
,
F.
,
Zanger
,
F.
,
Schulze
,
V.
,
Balk
,
T.
, and
Jawahir
,
I.
,
2016
, “
Cryogenic Machining of Porous Tungsten for Enhanced Surface Integrity
,”
J. Mater. Process. Technol.
,
229
, pp.
614
621
.10.1016/j.jmatprotec.2015.10.002
29.
Khaliq
,
W.
,
Zhang
,
C.
,
Jamil
,
M.
, and
Khan
,
A. M.
,
2020
, “
Tool Wear, Surface Quality, and Residual Stresses Analysis of Micro-Machined Additive Manufactured Ti–6Al–4V Under Dry and MQL Conditions
,”
Tribol. Int.
,
151
, p.
106408
.10.1016/j.triboint.2020.106408
30.
Sartori
,
S.
,
Moro
,
L.
,
Ghiotti
,
A.
, and
Bruschi
,
S.
,
2017
, “
On the Tool Wear Mechanisms in Dry and Cryogenic Turning Additive Manufactured Titanium Alloys
,”
Tribol. Int.
,
105
, pp.
264
273
.10.1016/j.triboint.2016.09.034
31.
El-Sayed
,
A.-R.
,
Mohamed
,
A. E.
,
Hassan
,
F. S.
, and
El-Mahdy
,
M. S.
,
2022
, “
Influence of Titanium Additions to Aluminum on the Microhardness Value and Electrochemical Behavior of Synthesized Aluminum-Titanium Alloy in Solutions of HCL and H3PO4
,”
J. Mater. Eng. Perform.
, pp.
1
18
.10.1007/s11665-022-07248-8
32.
Vipindas
,
K.
, and
Mathew
,
J.
,
2019
, “
Wear Behavior of TiALN Coated WC Tool During Micro End Milling of Ti-6Al-4V and Analysis of Surface Roughness
,”
Wear
,
424–425
, pp.
165
182
.10.1016/j.wear.2019.02.018
You do not currently have access to this content.