Thermal fiber drawing process has emerged as a promising nanomanufacturing process to generate high-throughput, well aligned, and indefinitely long micro/nanostructures. However, scalable fabrication of metal–polymer nanocomposite is still a challenge, since it is still very difficult to control metal core geometry at nanoscale due to the low-viscosity and high-surface energy of molten metals in cladding materials (e.g., polymer or glass). Here, we show that a scalable nanomanufacture of metal–polymer nanocomposite via thermal fiber drawing is possible. Polyethersulfone (PES) fibers embedded with Sn nanoparticles (<200 nm) were produced by the iterative size reduction thermal fiber drawing. A post-characterization procedure was developed to successfully reveal the metal core geometry at submicron scale. A three-stage control mechanism is proposed to realize the possible control of the metal nanoparticle morphology. This thermal drawing approach promises a scalable production of metal–polymer nanocomposite fibers with unique physicochemical properties for exciting new functionalities.

References

1.
Stefanescu
,
E. A.
,
Daranga
,
C.
, and
Stefanescu
,
C.
,
2009
, “
Insight Into the Broad Field of Polymer Nanocomposites: From Carbon Nanotubes to Clay Nanoplatelets, Via Metal Nanoparticles
,”
Materials
,
2
(
4
), pp.
2095
2153
.
2.
Nicolais
,
L.
, and
Carotenuto
,
G.
,
2005
,
Metal-Polymer Nanocomposites
,
Wiley
,
New York
.
3.
Gao
,
F.
,
2012
,
Advances in Polymer Nanocomposites: Types and Applications
,
Elsevier Science
,
Amsterdam, The Netherlands
.
4.
Faupel
,
F.
,
Zaporojtchenko
,
V.
,
Strunskus
,
T.
, and
Elbahri
,
M.
,
2010
, “
Metal–Polymer Nanocomposites for Functional Applications
,”
Adv. Eng. Mater.
,
12
(
12
), pp.
1177
1190
.
5.
Hecht
,
D. S.
,
Hu
,
L.
, and
Irvin
,
G.
,
2011
, “
Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures
,”
Adv. Mater.
,
23
(
13
), pp.
1482
1513
.
6.
Ellmer
,
K.
,
2012
, “
Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes
,”
Nat. Photon.
,
6
(
12
), pp.
809
817
.
7.
Xu
,
F.
, and
Zhu
,
Y.
,
2012
, “
Highly Conductive and Stretchable Silver Nanowire Conductors
,”
Adv. Mater.
,
24
(
37
), pp.
5117
5122
.
8.
Mutiso
,
R. M.
, and
Winey
,
K. I.
,
2015
, “
Electrical Properties of Polymer Nanocomposites Containing Rod-Like Nanofillers
,”
Prog. Polym. Sci.
,
40
, pp.
63
84
.
9.
Landy
,
N.
,
Sajuyigbe
,
S.
,
Mock
,
J.
,
Smith
,
D.
, and
Padilla
,
W.
,
2008
, “
Perfect Metamaterial Absorber
,”
Phys. Rev. Lett.
,
100
(
20
), p.
207402
.
10.
Khodasevych
,
I. E.
,
Wang
,
L.
,
Mitchell
,
A.
, and
Rosengarten
,
G.
,
2015
, “
Micro- and Nanostructured Surfaces for Selective Solar Absorption
,”
Adv. Opt. Mater.
,
3
(
7
), pp.
852
881
.
11.
Hedayati
,
M. K.
,
Faupel
,
F.
, and
Elbahri
,
M.
,
2014
, “
Review of Plasmonic Nanocomposite Metamaterial Absorber
,”
Materials
,
7
(
2
), pp.
1221
1248
.
12.
Palza
,
H.
,
2015
, “
Antimicrobial Polymers With Metal Nanoparticles
,”
Int. J. Mol. Sci.
,
16
(
1
), pp.
2099
2116
.
13.
Canales
,
A.
,
Jia
,
X.
,
Froriep
,
U. P.
,
Koppes
,
R. A.
,
Tringides
,
C. M.
,
Selvidge
,
J.
,
Lu
,
C.
,
Hou
,
C.
,
Wei
,
L.
,
Fink
,
Y.
, and
Anikeeva
,
P.
,
2015
, “
Multifunctional Fibers for Simultaneous Optical, Electrical and Chemical Interrogation of Neural Circuits in vivo
,”
Nat. Biotechnol.
,
33
(
3
), pp.
277
284
.
14.
Argyros
,
A.
,
Tuniz
,
A.
,
Fleming
,
S. C.
, and
Kuhlmey
,
B. T.
,
2014
, “
Metal-Polymer Composite Fibres for Metamaterials Fabrication and Their Applications
,”
Asia Communications and Photonics Conference
, pp.
ATh2C 1
.
15.
Cima
,
M. J.
,
2014
, “
Next-Generation Wearable Electronics
,”
Nat. Biotechnol.
,
32
(
7
), pp.
642
643
.
16.
Stoppa
,
M.
, and
Chiolerio
,
A.
, “
Wearable Electronics and Smart Textiles: A Critical Review
,”
Sensors
,
14
(
7
), pp.
11957
11992
.
17.
Paniagua-Domínguez
,
R.
,
2011
, “
Metallo-Dielectric Core–Shell Nanospheres Asbuilding Blocks for Optical Three-Dimensional Isotropic Negative-Index Metamaterials
,”
New J. Phys.
,
13
(
12
), p.
123017
.
18.
Alù
,
A.
,
2006
, “
Theory of Linear Chains of Metamaterial/Plasmonic Particles as Subdiffraction Optical Nanotransmission Lines
,”
Phys. Rev. B
,
74
(
20
), p.
205436
.
19.
Hanemann
,
T.
,
2010
, “
Polymer–Nanoparticle Composites: From Synthesis to Modern Applications
,”
Materials
,
3
(
6
), pp.
3468
3517
.
20.
Rozenberg
,
B.
, and
Tenne
,
R.
,
2008
, “
Polymer-Assisted Fabrication of Nanoparticles and Nanocomposites
,”
Prog. Polym. Sci.
,
33
(
1
), pp.
40
112
.
21.
Heness
,
G.
,
2012
, “
Metal–Polymer Nanocomposites
,”
Advances in Polymer Nanocomposites: Types and Applications
, F. Gao, ed.,
Woodhead Publishing
,
Philadelphia, PA
, pp.
164
177
.
22.
Cao
,
G.
, and
Wang
,
Y.
,
2004
,
Nanostructures and Nanomaterials: Synthesis, Properties and Applications
,
Imperial College Press
,
London
.
23.
Liu
,
Z.
,
2013
, “
Conducting Polymer–Metal Nanocomposites Synthesis and Their Sensory Applications
,”
Curr. Org. Chem.
,
17
(
20
), pp.
2256
2267
.
24.
Kaufman
,
J. J.
,
Ottman
,
R.
,
Tao
,
G. M.
,
Shabahang
,
S.
,
Banaei
,
E. H.
,
Liang
,
X. D.
,
Johnson
,
S. G.
,
Fink
,
Y.
,
Chakrabarti
,
R.
, and
Abouraddy
,
A. F.
,
2013
, “
In-Fiber Production of Polymeric Particles for Biosensing and Encapsulation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
39
), pp.
15549
15554
.
25.
Kaufman
,
J. J.
,
Tao
,
G.
,
Shabahang
,
S.
,
Banaei
,
E.-H.
,
Deng
,
D. S.
,
Liang
,
X.
,
Johnson
,
S. G.
,
Fink
,
Y.
, and
Abouraddy
,
A. F.
,
2012
, “
Structured Spheres Generated by an In-Fibre Fluid Instability
,”
Nature
,
487
(
7408
), pp.
463
467
.
26.
Yaman
,
M.
,
Khudiyev
,
T.
,
Ozgur
,
E.
,
Kanik
,
M.
,
Aktas
,
O.
,
Ozgur
,
E. O.
,
Deniz
,
H.
,
Korkut
,
E.
, and
Bayindir
,
M.
,
2011
, “
Arrays of Indefinitely Long Uniform Nanowires and Nanotubes
,”
Nat. Mater.
,
10
(
7
), pp.
494
501
.
27.
Naman
,
O. T.
,
New-Tolley
,
M. R.
,
Lwin
,
R.
,
Tuniz
,
A.
,
Al-Janabi
,
A. H.
,
Karatchevtseva
,
I.
,
Fleming
,
S. C.
,
Kuhlmey
,
B. T.
, and
Argyros
,
A.
,
2013
, “
Indefinite Media Based on Wire Array Metamaterials for the THz and Mid-IR
,”
Adv. Opt. Mater.
,
1
(
12
), pp.
971
977
.
28.
Tomotika
,
S.
,
1935
, “
On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid
,”
Proc. R. Soc. A
,
150
(
870
), pp.
322
337
.
29.
Gumennik
,
A.
,
Wei
,
L.
,
Lestoquoy
,
G.
,
Stolyarov
,
A. M.
,
Jia
,
X.
,
Rekemeyer
,
P. H.
,
Smith
,
M. J.
,
Liang
,
X.
,
Grena
,
B. J.-B.
,
Johnson
,
S. G.
,
Gradečak
,
S.
,
Abouraddy
,
A. F.
,
Joannopoulos
,
J. D.
, and
Fink
,
Y.
,
2013
, “
Silicon-in-Silica Spheres Via Axial Thermal Gradient In-Fibre Capillary Instabilities
,”
Nat. Commun.
,
4
, p. 2216.
30.
Middleman
,
S.
,
1977
,
Fundamentals of Polymer Processing
,
McGraw-Hill
,
New York
.
31.
Petrie
,
C. J.
,
2006
, “
Extensional Viscosity: A Critical Discussion
,”
J. Non-Newtonian Fluid Mech.
,
137
(
1–3
), pp.
15
23
.
32.
Eggers
,
J.
,
1997
, “
Nonlinear Dynamics and Breakup of Free-Surface Flows
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
865
930
.
33.
Donald
,
I.
,
1987
, “
Production, Properties and Applications of Microwire and Related Products
,”
J. Mater. Sci.
,
22
(
8
), pp.
2661
2679
.
34.
Favelukis
,
M.
,
Lavrenteva
,
O. M.
, and
Nir
,
A.
,
2012
, “
On the Evolution and Breakup of Slender Drops in an Extensional Flow
,”
Phys. Fluids
,
24
(
4
), p.
043101
.
You do not currently have access to this content.