Lapping is a key processing step for precision parts, which directly affects machining quality, precision, and efficiency. Due to some drawbacks of free-abrasive lapping such as deep scratches on the lapped surface, lower lapping efficiency for lower lapping speed, severe waste of abrasive, high-processing cost, and so on, conventional fixed-abrasive lapping (CFL) technology was proposed and developed recently. Meanwhile, considering the unique advantages of the ultrasonic-assisted machining during the processing of those hard and brittle materials and the effect of ultrasonic vibration on the self-sharpening characteristic of abrasive pellet, a novel ultrasonic-assisted fixed-abrasive lapping (UAFL) technology is put forward and corresponding lapping device for engineering ceramics cylindrical part is developed in this paper. Meanwhile, UAFL mechanism and characteristics were studied theoretically and experimentally. Research results show that superimposed ultrasonic vibration changes the lapping movement characteristics and material removal mechanism to a certain extent, helping to heighten material removal rate, smoothen the waveform of tangential force, reduce the average tangential force, and improve surface machining quality. UAFL can be regarded as a high efficiency and precision processing technology for engineering ceramics cylindrical part.

References

1.
Tian
,
X. L.
, and
Yu
,
A. B.
,
2006
,
Theory and Technology of Engineering Ceramic Machining
,
Defence Industry Press
, Beijing,
China
, Chap. 1.
2.
Wang
,
W. L.
,
Wang
,
L.
,
Tian
,
X. L.
,
Tang
,
X. J.
, and
Zhang
,
B. G.
,
2015
, “
Research Status and Progresses of Special Machining Technologies for Engineering Ceramic
,”
Mach. Tool Hydraul.
,
43
(7), pp.
176
180
.
3.
Wang
,
J.
, and
Guo
,
D. M.
,
2003
, “
The Cutting Performance in Multipass Abrasive Water Jet Machining of Industrial Ceramics
,”
J. Mater. Process. Technol.
,
133
(
3
), pp.
371
377
.
4.
Ghahramani
,
B.
, and
Wang
,
Z. Y.
,
2001
, “
Precision Ultrasonic Machining Process: A Case Study of Stress Analysis of Ceramic
,”
Int. J. Mach. Tools Manuf.
,
41
(
8
), pp.
1189
1208
.
5.
Kang
,
J.
, and
Hadfield
,
M.
,
2005
, “
Examination of the Material Removal Mechanisms During the Lapping Process of Advanced Ceramic Rolling Elements
,”
Wear
,
258
(
1–4
), pp.
2
12
.
6.
Yuan
,
J. L.
, and
Zhao
,
P.
,
2003
, “
Lapping and Polishing Process for Obtaining Super-Smooth Surfaces of Quartz Crystal
,”
J. Mater. Process. Technol.
,
138
(
1–3
), pp.
116
119
.
7.
Li
,
B. M.
, and
Zhao
,
B.
,
2004
,
Modern Grinding Technology
,
Mechanical Industry Press
, Beijing,
China
, Chap. 11.
8.
Yang
,
J. D.
,
Tian
,
C. L.
, and
Xiao
,
Y.
,
2000
, “
Effect of Abrasive Size on Machined Workpiece Surface in Solid Abrasive Lapping
,”
Proc. SPIE
,
4231
, pp.
527
530
.
9.
Cho
,
B. J.
,
Kim
,
H. M.
,
Manivannan
,
R.
,
Moon
,
D. J.
, and
Park
,
J. G.
,
2013
, “
On the Mechanism of Material Removal by Fixed Abrasive Lapping of Various Glass Substrates
,”
Wear
,
302
(
1–2
), pp.
1334
1339
.
10.
Kim
,
H. M.
,
Manivannan
,
R.
,
Moon
,
D. J.
,
Xiong
,
H. L.
, and
Park
,
J. G.
,
2013
, “
Evaluation of Double Sided Lapping Using a Fixed Abrasive Pad for Sapphire Substrates
,”
Wear
,
302
(
1–2
), pp.
1340
1344
.
11.
Fletcher
,
T. D.
,
Dronen
,
B.
,
Gobena
,
F. T.
, and
Larson
,
E.
,
2003
, “
Fixed Abrasive Flat Lapping With 3M™ Trizact™ Diamond Tile Abrasive Pads
,”
Proc. SPIE
,
1
, pp.
32
35
.
12.
Yang
,
J. D.
, and
Tian
,
C. L.
,
2004
,
High Speed Lapping Technology
,
Defence Industry Press
, Beijing,
China
, Chap. 2.
13.
Joliet
,
R.
,
Kansteiner
,
M.
, and
Kersting
,
P.
,
2015
, “
A Process Model for Force-Controlled Honing Simulations
,”
Proc. CIRP
,
28
, pp. 46–51.
14.
Klocke
,
F.
,
2009
,
Manufacturing Processes 2: Grinding, Honing, Lapping
, RWTH ed.,
Springer Ebooks
,
Berlin
, Chap. 7–8.
15.
Tadeusz
,
M.
,
Fab
,
T.
,
Klodowski
,
A.
,
Matuszewski
,
M.
,
Olaru
,
A.
, and
Olaru
,
S.
,
2016
, “
Computer Aided System for Superfinishing Process Control
,”
Procedia Technol.
,
22
, pp.
48
54
.
16.
Varghese
,
B.
, and
Malkin
,
S.
,
2000
, “
Selection of Optimal Superfinishing Parameters
,”
J. Manuf. Processes
,
2
(
2
), pp.
124
130
.
17.
Uhlmann
,
E.
, and
Hübert
,
C.
,
2006
, “
Advances in Ultrasonic Assisted Grinding of Ceramic Materials
,”
Adv. Sci. Technol.
,
45
, pp.
1711
1716
.
18.
Uhlmann
,
E.
, and
Spur
,
G.
,
1998
, “
Surface Formation in Creep Feed Grinding of Advanced Ceramics With and Without Ultrasonic Assistance
,”
CIRP Ann. Manuf. Technol.
,
47
(
1
), pp.
249
252
.
19.
Zeng
,
W. M.
,
Li
,
Z. C.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
,
2005
, “
Experimental Observation of Tool Wear in Rotary Ultrasonic Machining of Advanced Ceramics
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1468
1473
.
20.
Shaw
,
M. C.
,
1995
, “
Precision Finishing
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
343
348
.
21.
Rowe
,
W. B.
,
2009
,
Principles of Modern Grinding Technology
,
William Andrew eBook
,
New York
, Chap. 14.
22.
Dong
,
Z. C.
, and
Cheng
,
H. B.
,
2014
, “
Study on Removal Mechanism and Removal Characters for SiC and Fused Silica by Fixed Abrasive Diamond Pellets
,”
Int. J. Mach. Tools Manuf.
,
85
(5), pp.
1
13
.
23.
Kumabe
,
J.
,
1985
,
Precision Machining: Vibration Cutting (Fundamentals and Applications)
,
Machinery Industry Press
, Beijing,
China
, Chap. 2.
24.
Wang
,
A. L.
,
Zhu
,
X. J.
, and
Wu
,
X. L.
,
2006
,
Power Ultrasonic Machining Technology
,
Defence Industry Press
, Beijing,
China
, Chap. 7.
25.
Qu
,
W. M.
,
1999
, “
The Effects of High Frequency Vibration on the Grinding Process
,” Ph.D. thesis, Michigan Technological University, Houghton, MI.
You do not currently have access to this content.