Abstract

Flexible optoelectronic devices have attracted considerable attention due to their low weight, portability, and ease of integration with other devices. However, major issues still exist: they are subject to repeated stresses, which often leads to damage; and the current fabrication methods such as photolithography and nano-imprint lithography can be very time-consuming or costly. This work aims to develop a novel cost-effective and time-efficient laser metasurface fabrication (LMF) technique for production of flexible optoelectronic devices. The experimental results have shown that the laser patterned flexible surfaces exhibit high visible transmittance, low sheet resistance, and extraordinary mechanical durability under repeated bending cycles. The laser patterned flexible surfaces have also demonstrated the potential to be utilized as heaters, which renders them new de-icing or de-fogging applications. This innovative laser patterning method will provide a new avenue for fabrication of multifunctional optoelectronic devices.

References

1.
Shin
,
Y. H.
,
Cho
,
C. K.
, and
Kim
,
H. K.
,
2013
, “
Resistance and Transparency Tunable Ag-Inserted Transparent InZnO Films for Capacitive Touch Screen Panels
,”
Thin Solid Films
,
548
, pp.
641
645
.10.1016/j.tsf.2013.10.007
2.
Triambulo
,
R. E.
,
Cheong
,
H. G.
, and
Park
,
J. W.
,
2014
, “
All-Solution-Processed Foldable Transparent Electrodes of Ag Nanowire Mesh and Metal Matrix Films for Flexible Electronics
,”
Org. Electron. Phys., Mater. Appl.
,
15
(
11
), pp.
2685
2695
.10.1016/j.orgel.2014.07.039
3.
Hssein
,
M.
,
Tuo
,
S.
,
Benayoun
,
S.
,
Cattin
,
L.
,
Morsli
,
M.
,
Mouchaal
,
Y.
,
Addou
,
M.
,
Khelil
,
A.
, and
Bernède
,
J. C.
,
2017
, “
Cu-Ag Bi-Layer Films in Dielectric/Metal/Dielectric Transparent Electrodes as ITO Free Electrode in Organic Photovoltaic Devices
,”
Org. Electron. Phys., Mater. Appl.
,
42
, pp.
173
180
.10.1016/j.orgel.2016.12.030
4.
Ye
,
T.
,
Jun
,
L.
,
Kun
,
L.
,
Hu
,
W.
,
Ping
,
C.
,
Ya-Hui
,
D.
,
Zheng
,
C.
,
Yun-Fei
,
L.
,
Hao-Ran
,
W.
, and
Yu
,
D.
,
2017
, “
Inkjet-Printed Ag Grid Combined With Ag Nanowires to Form a Transparent Hybrid Electrode for Organic Electronics
,”
Org. Electron. Phys., Mater. Appl.
,
41
, pp.
179
185
.10.1016/j.orgel.2016.10.046
5.
Formica
,
N.
,
Sundar Ghosh
,
D.
,
Chen
,
T. L.
,
Eickhoff
,
C.
,
Bruder
,
I.
, and
Pruneri
,
V.
,
2012
, “
Highly Stable Ag-Ni Based Transparent Electrodes on PET Substrates for Flexible Organic Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
107
, pp.
63
68
.10.1016/j.solmat.2012.08.002
6.
Kato
,
Y.
,
Jung
,
M. C.
,
Lee
,
M. V.
, and
Qi
,
Y.
,
2014
, “
Electrical and Optical Properties of Transparent Flexible Electrodes: Effects of UV Ozone and Oxygen Plasma Treatments
,”
Org. Electron. Phys., Mater. Appl.
,
15
(
3
), pp.
721
728
.10.1016/j.orgel.2014.01.002
7.
Li
,
P.
,
Ma
,
J. G.
,
Xu
,
H. Y.
,
Lin
,
D.
,
Xue
,
X. D.
,
Yan
,
X. Z.
,
Xia
,
P.
, and
Liu
,
Y. C.
,
2016
, “
Flexible Transparent Heaters Based on Silver Nanotrough Meshes
,”
J. Alloys Compd.
,
664
, pp.
764
769
.10.1016/j.jallcom.2015.12.216
8.
Lim
,
M.
,
Kim
,
H. J.
,
Ko
,
E. H.
,
Choi
,
J.
, and
Kim
,
H. K.
,
2016
, “
Ultrafast Laser-Assisted Selective Removal of Self-Assembled Ag Network Electrodes for Flexible and Transparent Film Heaters
,”
J. Alloys Compd.
,
688
, pp.
198
205
.10.1016/j.jallcom.2016.07.034
9.
Hu
,
M.
,
Gao
,
J.
,
Dong
,
Y.
,
Li
,
K.
,
Shan
,
G.
,
Yang
,
S.
, and
Li
,
R. K. Y.
,
2012
, “
Flexible Transparent PES/Silver Nanowires/PET Sandwich-Structured Film for High-Efficiency Electromagnetic Interference Shielding
,”
Langmuir
,
28
(
18
), pp.
7101
7106
.10.1021/la300720y
10.
Han
,
J.
,
Wang
,
X.
,
Qiu
,
Y.
,
Zhu
,
J.
, and
Hu
,
P.
,
2015
, “
Infrared-Transparent Films Based on Conductive Graphene Network Fabrics for Electromagnetic Shielding
,”
Carbon N. Y.
,
87
(
C
), pp.
206
214
.10.1016/j.carbon.2015.01.057
11.
Lyu
,
H.
,
Ping
,
X.
,
Gao
,
R.
,
Xu
,
L.
, and
Pan
,
L.
,
2017
, “
Transparent Electronic Skin Device Based on Microstructured Silver Nanowire Transparent Electronic Skin Device Based on Microstructured Silver Nanowire Electrode
,”
Chin. J. Chem. Phys.
,
30
(
5
), pp.
603
608
.10.1063/1674-0068/30/cjcp1706126
12.
Wang
,
Q.
,
Jian
,
M.
,
Wang
,
C.
, and
Zhang
,
Y.
,
2017
, “
Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin
,”
Adv. Funct. Mater.
,
27
(
9
), pp.
1
9
.10.1002/adfm.201605657
13.
Banks
,
M.
,
2010
, “
Flexible Electronics Enters the E-Reader Market
,”
Phys. World
,
23
(
2
), p.
8
.10.1088/2058-7058/23/02/14
14.
Han
,
S.
,
Hong
,
S.
,
Ham
,
J.
,
Yeo
,
J.
,
Lee
,
J.
,
Kang
,
B.
,
Lee
,
P.
,
Kwon
,
J.
,
Lee
,
S. S.
,
Yang
,
M. Y.
, and
Ko
,
S. H.
,
2014
, “
Fast Plasmonic Laser Nanowelding for a Cu-Nanowire Percolation Network for Flexible Transparent Conductors and Stretchable Electronics
,”
Adv. Mater.
,
26
(
33
), pp.
5808
5814
.10.1002/adma.201400474
15.
Hong
,
S.
,
Yeo
,
J.
,
Kim
,
G.
,
Kim
,
D.
,
Lee
,
H.
,
Kwon
,
J.
,
Lee
,
H.
,
Lee
,
P.
, and
Ko
,
S. H.
,
2013
, “
Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink
,”
ACS Nano
,
7
(
6
), pp.
5024
5031
.10.1021/nn400432z
16.
Kang
,
Z.
,
Wu
,
B.
,
Wang
,
R.
, and
Wu
,
W.
,
2018
, “
Laser-Based Fabrication of Carbon Nanotube–Silver Composites With Enhanced Fatigue Performance Onto a Flexible Substrate
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091005
.10.1115/1.4039492
17.
Paeng
,
D.
,
Yoo
,
J. H.
,
Yeo
,
J.
,
Lee
,
D.
,
Kim
,
E.
,
Ko
,
S. H.
, and
Grigoropoulos
,
C. P.
,
2015
, “
Low-Cost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation
,”
Adv. Mater.
,
27
(
17
), pp.
2762
2767
.10.1002/adma.201500098
18.
Lee
,
D.
,
Paeng
,
D.
,
Park
,
H. K.
, and
Grigoropoulos
,
C. P.
,
2014
, “
Vacuum-Free, Maskless Patterning of Ni Electrodes by Laser Reductive Sintering of Nio Nanoparticle Ink and Its Application to Transparent Conductors
,”
ACS Nano
,
8
(
10
), pp.
9807
9814
.10.1021/nn503383z
19.
Theuring
,
M.
,
Steenhoff
,
V.
,
Geißendörfer
,
S.
,
Vehse
,
M.
,
von Maydell
,
K.
, and
Agert
,
C.
,
2015
, “
Laser Perforated Ultrathin Metal Films for Transparent Electrode Applications
,”
Opt. Express
,
23
(
7
), p.
A254
.10.1364/OE.23.00A254
20.
Wu
,
H.
,
Kong
,
D.
,
Ruan
,
Z.
,
Hsu
,
P.-C.
,
Wang
,
S.
,
Yu
,
Z.
,
Carney
,
T. J.
,
Hu
,
L.
,
Fan
,
S.
, and
Cui
,
Y.
,
2013
, “
A Transparent Electrode Based on a Metal Nanotrough Network
,”
Nat. Nanotechnol.
,
8
(
6
), pp.
421
425
.10.1038/nnano.2013.84
21.
Hsu
,
P. C.
,
Kong
,
D.
,
Wang
,
S.
,
Wang
,
H.
,
Welch
,
A. J.
,
Wu
,
H.
, and
Cui
,
Y.
,
2014
, “
Electrolessly Deposited Electrospun Metal Nanowire Transparent Electrodes
,”
J. Am. Chem. Soc.
,
136
(
30
), pp.
10593
10596
.10.1021/ja505741e
22.
Yang
,
S. M.
,
Lee
,
Y. S.
,
Jang
,
Y.
,
Byun
,
D.
, and
Choa
,
S. H.
,
2016
, “
Electromechanical Reliability of a Flexible Metal-Grid Transparent Electrode Prepared by Electrohydrodynamic (EHD) Jet Printing
,”
Microelectron. Reliab.
,
65
, pp.
151
159
.10.1016/j.microrel.2016.07.146
23.
Jeong
,
J. A.
,
Kim
,
H. K.
, and
Kim
,
J.
,
2014
, “
Invisible Ag Grid Embedded With ITO Nanoparticle Layer as a Transparent Hybrid Electrode
,”
Sol. Energy Mater. Sol. Cells
,
125
, pp.
113
119
.10.1016/j.solmat.2014.03.003
24.
Wang
,
Q.
,
Li
,
B.
,
Toor
,
F.
, and
Ding
,
H.
,
2019
, “
Novel Laser-Based Metasurface Fabrication Process for Transparent Conducting Surfaces
,”
J. Laser Appl.
,
31
(
2
), p.
022505
.10.2351/1.5096085
25.
Wang
,
Q.
,
Raglione
,
M.
,
Li
,
B.
,
Jin
,
X.
,
Toor
,
F.
,
Arnold
,
M.
, and
Ding
,
H.
,
2019
, “
High Throughput Laser Process of Transparent Conducting Surfaces for Terahertz Bandpass Ultrathin Metamaterials
,”
Sci. Rep.
,
9
(
1
), p.
3083
.10.1038/s41598-019-38949-1
26.
Wang
,
Q.
,
Gao
,
B.
,
Raglione
,
M.
,
Wang
,
H.
,
Li
,
B.
,
Toor
,
F.
,
Arnold
,
M. A.
, and
Ding
,
H.
,
2019
, “
Design, Fabrication, and Modulation of THz Bandpass Metamaterials
,”
Laser Photon. Rev.
,
13
(
11
), p.
1900071
.10.1002/lpor.201900071
27.
Hong
,
S. Y.
,
Lee
,
Y. H.
,
Park
,
H.
,
Jin
,
S. W.
,
Jeong
,
Y. R.
,
Yun
,
J.
,
You
,
I.
,
Zi
,
G.
, and
Ha
,
J. S.
,
2016
, “
Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin
,”
Adv. Mater.
,
28
(
5
), pp.
930
935
.10.1002/adma.201504659
28.
Woo
,
J. Y.
,
Kim
,
K. K.
,
Lee
,
J.
,
Kim
,
J. T.
, and
Han
,
C. S.
,
2014
, “
Highly Conductive and Stretchable Ag Nanowire/Carbon Nanotube Hybrid Conductors
,”
Nanotechnology
,
25
(
28
), p.
285203
.10.1088/0957-4484/25/28/285203
29.
Jo
,
H. S.
,
An
,
S.
,
Lee
,
J. G.
,
Park
,
H. G.
,
Al-Deyab
,
S. S.
,
Yarin
,
A. L.
, and
Yoon
,
S. S.
,
2017
, “
Highly Flexible, Stretchable, Patternable, Transparent Copper Fiber Heater on a Complex 3D Surface
,”
NPG Asia Mater.
,
9
(
2
), p.
e347
.10.1038/am.2016.206
30.
Hu
,
X.
,
Krull
,
P.
,
de Graff
,
B.
,
Dowling
,
K.
,
Rogers
,
J. A.
, and
Arora
,
W. J.
,
2011
, “
Stretchable Inorganic-Semiconductor Electronic Systems
,”
Adv. Mater.
,
23
(
26
), pp.
2933
2936
.10.1002/adma.201100144
31.
Liu
,
Y.
,
Kolbakir
,
C.
,
Hu
,
H.
,
Meng
,
X.
, and
Hu
,
H.
,
2019
, “
An Experimental Study on the Thermal Effects of Duty-Cycled Plasma Actuation Pertinent to Aircraft Icing Mitigation
,”
Int. J. Heat Mass Transfer
,
136
, pp.
864
876
.10.1016/j.ijheatmasstransfer.2019.03.068
32.
Shahriari
,
E.
, and
Varnamkhasti
,
M. G.
,
2014
, “
Nonlinear Optical and Electrical Characterization of Nanostructured Cu Thin Film
,”
Superlattices Microstruct.
,
75
, pp.
523
532
.10.1016/j.spmi.2014.08.001
33.
Wang
,
T.
,
Li
,
B.
,
Ren
,
N.
,
Huang
,
L.
, and
Huang
,
L.
,
2019
, “
Influence of Al/Cu Thickness Ratio and Deposition Sequence on Photoelectric Property of ZnO/Al/Cu/ZnO Multilayer Film on PET Substrate Prepared by RF Magnetron Sputtering
,”
Mater. Sci. Semicond. Process.
,
91
, pp.
73
80
.10.1016/j.mssp.2018.11.013
34.
Ko
,
Y. H.
,
Kim
,
M. S.
, and
Yu
,
J. S.
,
2012
, “
Controllable Electrochemical Synthesis of ZnO Nanorod Arrays on Flexible ITO/PET Substrate and Their Structural and Optical Properties
,”
Appl. Surf. Sci.
,
259
, pp.
99
104
.10.1016/j.apsusc.2012.06.109
35.
Lahiri
,
B.
,
Dylewicz
,
R.
,
La Rue
,
R. M. D.
, and
Johnson
,
N. P.
,
2010
, “
Impact of Titanium Adhesion Layers on the Response of Arrays of Metallic Split-Ring Resonators (SRRs)
,”
Opt. Express
,
18
(
11
), pp.
11202
11208
.10.1364/OE.18.011202
36.
Taylor
,
A. A.
,
Cordill
,
M. J.
,
Bowles
,
L.
,
Schalko
,
J.
, and
Dehm
,
G.
,
2013
, “
An Elevated Temperature Study of a Ti Adhesion Layer on Polyimide
,”
Thin Solid Films
,
531
, pp.
354
361
.10.1016/j.tsf.2013.01.016
37.
Bauccio
,
M. L.
, ed.,
1993
,
ASM Metals Reference Book
,
ASM International
, Materials Park, OH.
You do not currently have access to this content.