Design and simulation of MEMS based capacitive sensor with doubly supported serpentine meander structure for millibar pressure applications proposed in this work is analyzed using INTELLISUITE and NISA softwares. In this model, microsensing membrane (MSM) is simulated using gold, silicon, and platinum materials of 1μm and 2μm thickness. This model has the incorporation to study the sensitivity and spring constant of the support structures for different boundary conditions. The model is validated in terms of virtual force method and finite element method. The design performance of the model is analyzed for the MSM’s support structure stability, maximum permissible displacement limit, sensitivity, pull-in, hysteresis, and dynamic behavior for different pressure loads. Design consideration is taken care to avoid deformation of MSM for the application of pressure load. The spring constant and the effect of fringing field capacitance is evaluated to optimize the design. The key factors of design information for the fabrication of millibar pressure sensor are analyzed.

1.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A.
, 2003, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
1057-7157,
12
(
5
), pp.
672
680
.
2.
Bakri-Kassem
,
M.
, and
Mansour
,
R. R.
, 2004, “
Two Movable-Membrane Nitride-Loaded MEMS Variable Capacitor
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
52
(
3
), pp.
831
837
.
3.
Ijntema
,
D. J.
, and
Tilmans
,
H. A. C.
, 1992, “
Static and Dynamic Aspects of an Air-Gap Capacitor
,”
Sens. Actuators, A
0924-4247,
35
, pp.
121
128
.
4.
McIntosh
,
R. B.
,
Mauger
,
P. E.
, and
Patterson
,
S. R.
, 2006, “
Capacitive Transducers With Curved Electrodes
,”
IEEE Sens. J.
1530-437X,
6
(
1
), pp.
125
138
.
5.
Afrang
,
S.
, and
Abbaspour-Sani
,
E.
, 2006, “
A Low Voltage MEMS Structure for RF Capacitive Switches
,”
Prog. Electromagn. Res.
1043-626X,
65
, pp.
157
167
.
6.
He
,
S.
, and
Mrad
,
R. B.
, 2008, “
Design, Modeling, and Demonstration of a MEMS Repulsive-Force Out-of-Plane Electrostatic Micro Actuator
,”
J. Microelectromech. Syst.
1057-7157,
17
(
3
), pp.
532
547
.
7.
Hao
,
Z.
,
Erbil
,
A.
, and
Ayazi
,
F.
, 2003, “
An Analytical Model for Support Loss in Micromachined Beam Resonators With In-Plane Flexural Vibrations
,”
Sens. Actuators, A
0924-4247,
109
, pp.
156
164
.
8.
Pons-Nin
,
J.
,
Rodringuez
,
A.
, and
Castener
,
L. M.
, 2002, “
Voltage and Pull-In Time in Current Drive of Electro Static Actuators
,”
J. Microelectromech. Syst.
1057-7157,
11
(
3
), pp.
196
205
.
9.
Rebeiz
,
G. M.
, 2003,
RF MEMES Theory design and Technology
,
Wiley
,
New York
.
10.
Kreith
,
F.
, and
Mahajan
,
R.
, 2006,
MEMS Introduction and Fundamentals
,
Taylor & Francis
,
London
.
11.
Li
,
H.
, and
Gengchen
,
S.
, 2009, “
Analysis of Application Patterns of Z-Type MEMS Microspring
,”
Microsyst. Technol.
0946-7076,
15
, pp.
527
533
.
12.
Lishchynska
,
M.
,
Cordero
,
N.
,
Slattery
,
O.
, and
Mahony
,
C.
, 2006, “
Spring Constant Models for Analysis and Design of MEMS Membranes on Straight or Meander Tethers
,”
Sens. Lett.
1546-198X,
4
, pp.
200
205
.
13.
Rocha
,
L. A.
,
Cretu
,
E.
, and
Wolffenbuttel
,
R. F.
, 2004, “
Analysis and Analytical Modeling of Static Pull-In With Application to MEMS-Based Voltage Reference and Process Monitoring
,”
J. Microelectromech. Syst.
1057-7157,
13
(
2
), pp.
342
354
.
14.
Lee
,
M. -J.
,
Zhang
,
Y.
,
Jung
,
C.
,
Bachman
,
M.
,
De Flaviis
,
F.
, and
Li
,
G. P.
, 2010, “
A Novel Membrane Process for RF MEMS Switches
,”
J. Microelectromech. Syst.
1057-7157,
19
(
3
), pp.
715
717
.
15.
Degani
,
O.
, and
Nemirovsky
,
Y.
, 2002, “
Design Considerations of Rectangular Electrostatic Torsion Actuators Based on New Analytical Pull-In Expressions
,”
J. Microelectromech. Syst.
1057-7157,
11
(
1
), pp.
20
26
.
16.
Pamidighantam
,
S.
,
Puers
,
R.
,
Baert
,
K.
, and
Tilmans
,
H. A. C.
, 2002, “
Pull-In Voltage Analysis of Electrostatically Actuated Beam Structures With Fixed-Fixed and Fixed-Free End Conditions
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
458
464
.
17.
Chao
,
P. C. P.
,
Chiu
,
C. W.
, and
Tsai
,
C. Y.
, 2006, “
A Novel Method to Predict the Pull-In Voltage in a Closed Form for Micro-Membranes Actuated by a Distributed Electrostatic Force
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
986
998
.
18.
Chowdhury
,
S.
,
Ahmadi
,
M.
, and
Miller
,
W. C.
, 2006, “
Pull-In Voltage Study of Electrostatically Actuated Fixed-Fixed Beams Using a VLSI On-Chip Interconnect Capacitance Model
,”
J. Microelectromech. Syst.
1057-7157,
15
(
3
), pp.
639
651
.
19.
Elata
,
D.
, and
Bamberger
,
H.
, 2006, “
On the Dynamic Pull-In of Electrostatic Actuators With Multiple Degrees of Freedom and Multiple Voltage Sources
,”
J. Microelectromech. Syst.
1057-7157,
15
(
1
), pp.
131
140
.
20.
Sadeghian
,
H.
,
Rezazadeh
,
G.
, and
Abbaspour Sani
,
E.
, 2006, “
Some Design Considerations on the Electrostatically Actuated Fixed-Fixed End Type MEMS Switches
,”
Journal of Physics: Conference Series 34
, pp.
174
179
.
21.
Osterberg
,
P. M.
, and
Senturia
,
S. D.
, 1997, “
M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
107
118
.
22.
Gilbert
,
J. R.
,
Ananthasuresh
,
G. K.
, and
Senturia
,
S. D.
, 1996, “
3D Modeling of Contact Problems and Hysteresis in Coupled Electro-Mechanics
,”
Proceedings of Microelectromechanical Systems, MEMS '96
, pp.
127
132
.
23.
Bao
,
M. H.
, 2001, “
Fringing Field Capacitances
,”
Handbook of Sensors and Actuators
,
Elsevier
,
New York
, Vol.
8
, pp.
144
145
.
You do not currently have access to this content.