We are developing a new technique to insert foreign DNA into a living cell using a microelectromechanical system. This new technique relies on electrical forces to move DNA in a nonuniform electric field. To better understand this phenomenon, we perform integrated modeling and experiments of DNA electrophoresis. This paper describes the protocol and presents the results for DNA motion experiments using fabricated gel electrophoresis devices. We show that DNA motion is strongly correlated with ion transport (current flow) in the system. A better understanding of electrophoretic fundamentals allows for the creation of a mathematical model to predict the motion of DNA during electrophoresis in both uniform and nonuniform electric fields. The mathematical model is validated within 4% through comparison with the experimental results.

1.
Aten
,
Q. T.
,
Jensen
,
B. D.
, and
Burnett
,
S. H.
, 2008, “
Testing of a Pumpless MEMS Microinjection Needle Employing Electrostatic Attraction and Repulsion of DNA
,”
ASME
Paper No. DETC2008-49548.
2.
Subirana
,
J.
, and
Soler-Lopez
,
M.
, 2003, “
Cations as Hydrogen Bond Donors: A View of Electrostatic Interactions in DNA
,”
Annu. Rev. Biophys. Biomol. Struct.
1056-8700,
32
(
1
), pp.
27
45
.
3.
Viovy
,
J. -L.
, 2000, “
Electrophoresis of DNA and Other Polyelectrolytes: Physical Mechanisms
,”
Rev. Mod. Phys.
0034-6861,
72
(
3
), pp.
813
872
.
4.
Slater
,
G. W.
,
Desruisseaux
,
C.
, and
Hubert
,
S. J.
, 2001, “
DNA Separation Mechanisms During Electrophoresis
,”
Capillary Electrophoresis of Nucleic Acids Volume 1: Introduction to the Capillary Electrophoresis of Nucleic Acids, Ser. Methods in Molecular Biology
,
K. R.
Mitchelson
and
J.
Cheng
, eds.,
Humana
,
New Jersey
, Vol.
162
, pp.
27
41
.
5.
Mohanty
,
S. K.
,
Rawla
,
S. K.
,
Engisch
,
K. L.
, and
Frazierl
,
A. B.
, 2003, “
A Micro System Using Dielectrophoresis and Electrical Impedance Spectroscopy for Cell Manipulation and Analysis
,”
The 12th International Conference on Solid State Sensors, Actuators and Microsystems
, pp.
1055
1058
.
6.
Asbury
,
C. L.
,
Diercks
,
A. H.
, and
van den Engh
,
G.
, 2002, “
Trapping of DNA by Dielectrophoresis
,”
Electrophoresis
0173-0835,
23
(
16
), pp.
2658
2666
.
7.
Pei
,
H.
,
Allison
,
S.
,
Haynes
,
B. M.
, and
Augustin
,
D.
, 2009, “
Brownian Dynamics Simulation of the Diffusion of Rods and Wormlike Chains in a Gel Modeled as a Cubic Lattice: Application to DNA
,”
J. Phys. Chem. B
1089-5647,
113
(
9
), pp.
2564
2571
.
8.
Sun
,
Y.
,
Kwok
,
Y. C.
, and
Nguyen
,
N. -T.
, 2007, “
Modeling and Experimental Characterization of Peak Tailing in DNA Gel Electrophoresis
,”
Microfluid. Nanofluid.
1613-4982,
3
(
3
), pp.
323
332
.
9.
Radivoyevitch
,
T.
, and
Cedervall
,
B.
, 1996, “
Mathematical Analysis of DNA Fragment Distribution Models Used With Pulsed-Field Gel Electrophoresis for DNA Double-Strand Break Calculations
,”
Electrophoresis
0173-0835,
17
(
6
), pp.
1087
1093
.
10.
Barkema
,
G. T.
,
Caron
,
C.
, and
Marko
,
J. F.
, 1996, “
Scaling Properties of Gel Electrophoresis of DNA
,”
Biopolymers
0006-3525,
38
, pp.
665
667
.
11.
Pernodet
,
N.
, and
Tinland
,
B.
, 1997, “
Influence of λ-DNA Concentration on Mobilities and Dispersion Coefficients During Agarose Gel Electrophoresis
,”
Biopolymers
0006-3525,
42
(
4
), pp.
471
478
.
12.
Lee
,
N.
,
Obukhov
,
S.
, and
Rubinstein
,
M.
, 1996, “
Deterministic Model of DNA Gel Electrophoresis in Strong Electric Fields
,”
Electrophoresis
0173-0835,
17
(
6
), pp.
1011
1017
.
13.
Allison
,
S. A.
,
Pei
,
H.
, and
Xin
,
Y.
, 2007, “
Modeling the Free Solution and Gel Electrophoresis of Biopolymers: The Bead Array-Effective Medium Model
,”
Biopolymers
0006-3525,
87
(
2–3
), pp.
102
114
.
14.
Krawczyk
,
M.
,
Pasciak
,
P.
,
Dydejczyk
,
A.
, and
Kulakowski
,
K.
, 2005, “
Gel Electrophoresis of DNA New Measurements and the Repton Model at High Fields
,”
Acta Phys. Pol. B
0587-4254,
36
(
5
), pp.
1653
1662
.
15.
Newman
,
M. E. J.
, and
Barkema
,
G. T.
, 1997, “
Diffusion Constant for the Repton Model of Gel Electrophoresis
,”
Phys. Rev. E
1063-651X,
56
(
3
), pp.
3468
3473
.
16.
Aten
,
Q. T.
, 2008, “
Design and Testing of a Pumpless Microelectromechanical System Nanoinjector
,” MS thesis, Brigham Young University.
17.
Allen
,
R. C.
, and
Budowle
,
B.
, 1994,
Gel Electrophoresis of Proteins and Nucleic Acids
,
Walter de Gruyter
,
New York
.
18.
Audubert
,
R.
, and
de Mende
,
S.
, 1960,
The Principles of Electrophoresis
,
Macmillan
,
New York
.
19.
Martin
,
R.
, 1996,
Gel Electrophoresis: Nucleic Acids
,
D. B. J. M.
Graham
, ed.,
BIOS Scientific
,
Hoboken, NJ
.
20.
Brebbia
,
C. A.
,
Telles
,
J. C. F.
, and
Wrobel
,
L. C.
, 1984,
Boundary Element Techniques: Theory and Applications in Engineering
,
Springer-Verlag
,
New York
.
21.
Mei
,
W. N.
, and
Holloway
,
A.
, 2005, “
Electrostatics of a Point Charge Between Intersecting Planes: Exact Solutions and Method of Images
,”
Int. J. Math. Educ. Sci. Technol.
0020-739X,
36
(
8
), pp.
843
860
.
22.
Coco
,
S.
, and
Ragusa
,
C.
, 2000, “
Accurate Computation of Local and Global Electrostatic Quantities From FE Solution
,”
IEEE Trans. Magn.
0018-9464,
36
(
4
), pp.
732
735
.
23.
Cady
,
W. G.
, 1935, “
The Potential Distribution Between Parallel Plates and Concentric Cylinders Due to Any Arbitrary Distribution of Space Charge
,”
Physics
,
6
(
1
), pp.
10
13
.
24.
Klein
,
L. A.
, and
Swift
,
C. T.
, 1977, “
An Improved Model for the Dielectric Constant of Sea Water at Microwave Frequencies
,”
IRE Trans. Antennas Propag.
0096-1973,
25
(
1
), pp.
104
111
.
25.
Stogryn
,
A.
, 1971, “
Equations for Calculating the Dielectric Constant of Saline Water
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
19
(
8
), pp.
733
736
.
26.
Ellison
,
W.
,
Balana
,
A.
,
Delbos
,
G.
,
Lamkaouchi
,
K.
,
Eymard
,
L.
,
Guillou
,
C.
, and
Prigent
,
C.
, 1998, “
New Permittivity Measurements of Seawater
,”
Radio Sci.
0048-6604,
33
(
3
), pp.
639
648
.
27.
Blanch
,
S.
, and
Aquasca
,
A.
, 2004, “
Seawater Dielecric Permittivity Model From Measurements at L Band
,”
Geoscience and Remote Sensing Symposium
, Vol.
2
, pp.
1362
1365
.
28.
Meissner
,
T.
, and
Wentz
,
F. J.
, 2004, “
The Complex Dielectric Constant of Pure and Sea Water From Microwave Satellite Observations
,”
IEEE Trans. Geosci. Remote Sens.
0196-2892,
42
(
9
), pp.
1836
1849
.
29.
Somaraju
,
R.
, and
Trumpf
,
J.
, 2006, “
Frequency, Temperature and Salinity Variation of the Permittivity of Seawater
,”
IEEE Trans. Antennas Propag.
0018-926X,
54
(
11
), pp.
3441
3448
.
30.
Hickey
,
J. D.
,
Hellerb
,
L.
,
Hellerc
,
R.
, and
Gilberta
,
R.
, 2007, “
Electric Field Mediated DNA Motion Model
,”
Bioelectrochemistry
1567-5394,
70
(
1
), pp.
101
103
.
31.
Morrison
,
I. D.
, and
Ross
,
S.
, 2002,
Colloidal Dispersions, Suspensions, Emulsions and Foams
,
Wiley-Interscience
,
Hoboken, NJ
.
32.
Everett
,
D. H.
, 1988,
Basic Principles of Colloid Science
,
Royal Society of Chemistry
,
London
.
33.
1967,
Electrophoresis Theory, Methods, and Applications
,
M.
Bier
, ed.,
Academic
,
New York
, Vol.
2
.
34.
1959,
Electrophoresis Theory, Methods, and Applications
,
M.
Bier
, ed.,
Academic
,
New York
, Vol.
1
.
35.
Shaw
,
D. J.
, 1969,
Electrophoresis
,
Academic
,
London
.
36.
Mosher
,
R. A.
,
Saville
,
D. A.
, and
Thormann
,
W.
, 1992,
The Dynamics of Electrophoresis
,
B. J.
Radola
, ed.,
Wiley-VCH
,
Germany
.
You do not currently have access to this content.