Effect of nanoparticle aggregation on the transport properties that include thermal conductivity and viscosity of nanofluids is studied by molecular dynamics (MD) simulation. Unlike many other MD simulations on nanofluids which have only one nanoparticle in the simulation box with periodic boundary condition, in this work, multiple nanoparticles are placed in the simulation box which makes it possible to simulate the aggregation of the nanoparticles. Thermal conductivity and viscosity of the nanofluid are calculated using Green–Kubo method and results show that the nanoparticle aggregation induces a significant enhancement of thermal conductivity in nanofluid, while the increase of viscosity is moderate. The results also indicate that different configurations of the nanoparticle cluster result in different enhancements of thermal conductivity and increase of viscosity in the nanofluid.

References

1.
Choi
,
S. U. S.
,
2009
, “
Nanofluids: From Vision to Reality Through Research
,”
ASME J. Heat Transfer
,
131
(
3
), p.
033106
.10.1115/1.3056479
2.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
),
pp.
280
289
.10.1115/1.2825978
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
),
pp.
718
720
.10.1063/1.1341218
4.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
),
pp.
567
574
.10.1115/1.1571080
5.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Nair
,
A. S.
,
George
,
B.
, and
Pradeep
,
T.
,
2003
, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
,
83
(
14
),
pp.
2931
2933
.10.1063/1.1602578
6.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
),
pp.
855
863
.10.1016/S0017-9310(01)00175-2
7.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
,
2003
, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
,
49
(
4
),
pp.
1038
1043
.10.1002/aic.690490420
8.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
(
4
),
pp.
367
373
.10.1016/j.ijthermalsci.2004.12.005
9.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
,
2008
, “
Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids
,”
Nanotechnology
,
19
(
30
), p.
305706
.10.1088/0957-4484/19/30/305706
10.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
,
2008
, “
Thermal Conductance of Nanofluids: Is the Controversy Over?,
J. Nanoparticle Res.
,
10
(
7
),
pp.
1089
1097
.10.1007/s11051-007-9352-1
11.
Karthikeyan
,
N. R.
,
Philip
,
J.
, and
Raj
,
B.
,
2008
, “
Effect of Clustering on the Thermal Conductivity of Nanofluids
,”
Mater. Chem. Phys.
,
109
(
1
),
pp.
50
55
.10.1016/j.matchemphys.2007.10.029
12.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
, p.
094312
.10.1063/1.3245330
13.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
,
2006
, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
,
89
(
13
), p.
133108
.10.1063/1.2356113
14.
Garg
,
J.
,
Poudel
,
B.
,
Chiesa
,
M.
,
Gordon
,
J. B.
,
Ma
,
J. J.
,
Wang
,
J. B.
,
Ren
,
Z. F.
,
Kang
,
Y. T.
,
Ohtani
,
H.
,
Nanda
,
J.
,
Mckinley
,
G. H.
, and
Chen
,
G.
,
2008
, “
Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid
,”
J. Appl. Phys.
,
103
(
7
), p.
074301
.10.1063/1.2902483
15.
Sarkar
,
S.
, and
Selvam
,
R. P.
,
2007
, “
Molecular Dynamics Simulation of Effective Thermal Conductivity and Study of Enhanced Thermal Transport Mechanism in Nanofluids
,”
J. Appl. Phys.
,
102
(
7
), p.
074302
.10.1063/1.2785009
16.
Vladkov
,
M.
, and
Barrat
,
J. L.
,
2006
, “
Modeling Transient Absorption and Thermal Conductivity in a Simple Nanofluid
,”
Nano Lett.
,
6
(
6
),
pp.
1224
1228
.10.1021/nl060670o
17.
Li
,
L.
,
Zhang
,
Y. W.
,
Ma
,
H. B.
, and
Yang
,
M.
,
2009
, “
Molecular Dynamics Simulation of Effect of Liquid Layering Around the Nanoparticle on the Enhanced Thermal Conductivity of Nanofluids
,”
J. Nanopart. Res.
,
12
(
3
),
pp.
811
821
.10.1007/s11051-009-9728-5
18.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
,
29
(
12
),
pp.
6443
6453
.10.1103/PhysRevB.29.6443
19.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2002
, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
,
65
(
14
), p.
144306
.10.1103/PhysRevB.65.144306
20.
McQuarrie
,
D. A.
,
2000
,
Statistical Mechanics
,
University Science Books
,
Sausalito
.
21.
Hoheisel
,
C.
,
1993
,
Theoretical Treatment of Liquids and Liquid Mixtures
,
Elsevier
,
Amsterdam
.
22.
Eapen
,
J.
,
Li
,
J.
, and
Yip
,
S.
,
2007
, “
Mechanism of Thermal Transport in Dilute Nanocolloids
,”
Phys. Rev. Lett.
,
98
(
2
), p.
028302
.10.1103/PhysRevLett.98.028302
23.
Vogelsang
,
R.
, and
Hoheisel
,
C.
,
1987
, “
Thermal Conductivity of the Lennard-Jones Liquid by Molecular Dynamics Calculations
,”
J. Chem. Phys.
,
86
(
11
),
pp.
6371
6375
.10.1063/1.452424
24.
Kang
,
H.
,
Zhang
,
Y.
, and
Yang
,
M.
,
2011
, “
Molecular Dynamics Simulation of Thermal Conductivity of Cu-Ar Nanofluid Using EAM Potential for Cu-Cu Interactions
,”
Appl. Phys. A: Mater. Sci. Process.
,
103
(
4
), pp.
1001
1008
.10.1007/s00339-011-6379-z
25.
Lide
,
D. R.
,
1993
,
Handbook of Chemistry and Physics
,
Chemical Rubber
,
Boca Raton
.
26.
Haile
,
J. M.
,
1997
,
Molecular Dynamics Simulation-Elementary Methods
,
Wiley
,
New York
.
27.
Yang
,
L.
,
Gan
,
Y.
,
Zhang
,
Y.
, and
Chen
,
J. K.
, “
Molecular Dynamics Simulation of Neck Growth in Laser Sintering of Different-Size Gold Nanoparticles Under Different Heating Rates
,”
Appl. Phys. A: Mater. Sci. Process.
,
106
(
3
), pp.
725
735
.10.1007/s00339-011-6680-x
You do not currently have access to this content.