Abstract

The operation and maintenance costs of wind farms are always high due to high labor costs and the high replacement cost of parts. Thus, it is of great importance to have real-time monitoring and an early fault diagnostic system to prevent major events, reduce time-based maintenance, and minimize the cost. In this paper, such a two-step system for early stage rolling bearing failures in offshore wind turbines is introduced. First, empirical mode decomposition is applied to minimize the effect of ambient noise. Next, correlation coefficients between a reference signal and test signals are obtained and incipient fault detection is achieved by comparing the results with a threshold value. Through further analysis of the envelope spectrum, sample entropy for selected intrinsic mode functions is obtained, which is further used to train a support vector machine classifier to achieve fault classification and degradation state recognition. The proposed diagnostic approach is verified by experimental tests, and an accuracy of 98% in identifying and classifying rolling bearing failures under various loading conditions is obtained.

References

2.
Yang
,
W.
,
Tavner
,
P. J.
,
Crabtree
,
C. J.
,
Feng
,
Y.
, and
Qiu
,
Y.
,
2012
, “
Wind Turbine Condition Monitoring: Technical and Commercial Challenges
,”
Wind Energy
,
17
(
5
), pp.
673
693
.
3.
Guo
,
W.
,
Peter
,
W. T.
, and
Djordjevich
,
A.
,
2012
, “
Faulty Bearing Signal Recovery From Large Noise Using a Hybrid Method Based on Spectral Kurtosis and Ensemble Empirical Mode Decomposition
,”
Measurement
,
45
(
5
), pp.
1308
1322
.
4.
Wahyu
,
C.
, and
Tegoeh
,
T.
,
2017
, “
A Review of Feature Extraction Methods in Vibration-Based Condition Monitoring and Its Application for Degradation Trend Estimation of Low-Speed Slew Bearing
,”
Machines
,
5
(
4
), p.
21
.
5.
He
,
Z.
,
Chen
,
J.
, and
Wang
,
T.
,
2010
,
Theories and Application of Machinery Fault Diagnosis
,
Higher Education Press
,
Beijing
.
6.
Zhang
,
L.
,
Xu
,
J.
,
Yang
,
J.
,
Yang
,
D.
, and
Wang
,
D.
,
2008
, “
Multiscale Morphology Analysis and Its Application to Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
22
(
3
), pp.
597
610
.
7.
Luo
,
Y.
,
Chen
,
C.
,
Kang
,
S.
, and
Zhang
,
P.
,
2019
, “
Fault Diagnosis of Rolling Element Bearing Using an Adaptive Multiscale Enhanced Combination Gradient Morphological Filter
,”
Shock Vib.
,
2019
(
1
), pp.
1
16
.
8.
Lv
,
C.
,
Zhang
,
P.
,
Wu
,
D.
,
Li
,
B.
, and
Yunqiang
,
Z.
,
2020
, “
Bearing Fault Signal Analysis Based on an Adaptive Multiscale Combined Morphological Filter
,”
Int. J. Rotating Mach.
,
2020
(
10
), pp.
1
8
.
9.
Lin
,
H.-C.
,
Ye
,
Y.-C.
,
Huang
,
B.-J.
, and
Su
,
J.-L.
,
2016
, “
Bearing Vibration Detection and Analysis Using Enhanced Fast Fourier Transform Algorithm
,”
Adv. Mech. Eng.
,
8
(
10
), pp.
1
11
.
10.
Su
,
W.-S.
,
Wang
,
F.-T.
,
Zhang
,
Z.-X.
,
Guo
,
Z.-G.
, and
Li
,
H.-K.
,
2010
, “
Application of EMD Denoising and Spectral Kurtosis in Early Fault Diagnosis of Rolling Element Bearings
,”
J. Vib. Shock
,
2010
(
29
), pp.
18
21
.
11.
Samanta
,
B.
,
2004
, “
Gear Fault Diagnosis Using Artificial Neural Networks and Support Vector Mechanics With Genetic Algorithms
,”
Mech. Syst. Signal Process.
,
18
(
3
), pp.
625
649
.
12.
Saidi
,
L.
,
Ben Ali
,
J.
,
Bechhoefer
,
E.
, and
Benbouzid
,
M.
,
2017
, “
Wind Turbine High-Speed Shaft Bearings Health Prognosis Through a Spectral Kurtosis-Derived Indices and SVR
,”
Appl. Acoust.
,
120
(
1
), pp.
1
8
.
13.
Yiakopoulos
,
C. T.
, and
Antoniadis
,
I. A.
,
2002
, “
Wavelet Based Demodulation of Vibration Signals Generated by Defects in Rolling Element Bearings
,”
Shock Vib.
,
9
(
6
), pp.
293
306
.
14.
Nikolaou
,
N. G.
, and
Antoniadis
,
I. A.
,
2002
, “
Rolling Element Bearing Fault Diagnosis Using Wavelet Packets
,”
NDT&E Int.
,
35
(
3
), pp.
197
205
.
15.
Widodo
,
A.
, and
Yang
,
B. S.
,
2008
, “
Wavelet Support Vector Machine for Induction Machine Fault Diagnosis Based on Transient Current Signal
,”
Expert Syst. Appl.
,
35
(
1–2
), pp.
307
316
.
16.
Abdel-O
,
B.
,
Jean-Christophe
,
C.
, and
Zazia
,
S.
,
2005
, “
EMD-Based Signal Noise Reduction
,”
Signal Process.
,
1
(
1
), pp.
33
37
.
17.
Guo
,
J.
,
Wang
,
X.
,
Zhai
,
C.
,
Niu
,
J.
, and
Lu
,
S.
,
2019
, “
Fault Diagnosis of Wind Turbine Bearing Using Synchrosqueezing Wavelet Transform and Order Analysis
,”
2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Xi'an, China
,
June 19–21
, pp.
2384
2387
.
18.
Chen
,
Q.
, and
Ye
,
M.
,
2014
, “Analysis of the Fault Diagnosis Method for Wind Turbine Generator Bearing Based on Improved Wavelet Packet-BP Neural Network,”
Intelligent Computing in Smart Grid and Electrical Vehicles. ICSEE 2014, LSMS 2014. Communications in Computer and Information Science
, Vol.
463
,
K.
Li
,
Y.
Xue
,
S.
Cui
, and
Q.
Niu
, eds.,
Springer
,
Berlin, Heidelberg
.
19.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Philos. Trans. R. Soc. London, Ser. A
,
454
(
1971
), pp.
903
995
.
20.
Pincus
,
S. M.
,
1991
, “
Approximate Entropy as a Measure of System Complexity
,”
Proc. Nat. Acad. Sci
,
88
(
6
), pp.
2297
2301
.
21.
Richman
,
J.
, and
Moorman
,
J.
,
2000
, “
Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
278
(
6
), pp.
H2039
H2049
.
22.
An
,
X.
, and
Pan
,
L.
,
2017
, “
Wind Turbine Bearing Fault Diagnosis Based on Adaptive Local Iterative Filtering and Approximate Entropy
,”
Proc. Inst. Mech. Eng. C
,
231
(
17
), pp.
3228
3237
.
23.
Ni
,
Q.
,
Feng
,
K.
,
Wang
,
K.
,
Yang
,
B.
, and
Wang
,
Y.
,
2017
, “
A Case Study of Sample Entropy Analysis to the Fault Detection of Bearing in Wind Turbine
,”
Case Stud. Eng. Fail. Anal.
,
9
(
1
), pp.
99
111
.
24.
David
,
L.
, and
Mathew
,
J.
,
1996
, “
Using the Correlation Dimension for Vibration Fault Diagnosis of Rolling Element Bearings—I. Basic Concepts
,”
Mech. Syst. Sig. Process.
,
10
(
3
), pp.
241
250
.
25.
Kanjilal
,
P. P.
, and
Palit
,
S.
,
1995
, “
On Multiple Pattern Extraction Using Singular Value Decomposition
,”
IEEE Trans. Signal Process.
,
43
(
6
), pp.
1536
1540
.
26.
Keogh
,
E.
,
Chakrabarti
,
K.
,
Pazzani
,
M.
, and
Mehrotra
,
S.
,
2001
, “
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
,”
Knowl. Inf. Syst.
,
3
(
3
), pp.
263
286
.
27.
Cong
,
F.
,
Chen
,
J.
, and
Pan
,
Y.
,
2011
, “
Kolmogorov-Smirnov Test for Rolling Bearing Performance Degradation Assessment and Prognosis
,”
J. Vib. Control
,
17
(
9
), pp.
1337
1347
.
28.
Sugumaran
,
V.
,
Muralidharan
,
V.
, and
Ramachandran
,
K. I.
,
2007
, “
Feature Selection Using Decision Tree and Classification Through Proximal Support Vector Machine for Fault Diagnostics of Roller Bearing
,”
Mech. Syst. Sig. Process.
,
21
(
2
), pp.
930
942
.
29.
Pandya
,
D.
,
Upadhyay
,
S.
, and
Harsha
,
S.
,
2013
, “
Fault Diagnosis of Rolling Element Bearing by Using Multinomial Logistic Regression and Wavelet Packet Transform
,”
Soft Comput.
,
18
(
2
), pp.
255
266
.
30.
Lin
,
C.-J.
,
Chu
,
W.-L.
,
Wang
,
C.-C.
,
Chen
,
C.-K.
, and
Chen
,
I-T.
,
2019
, “
Diagnosis of Ball-Bearing Faults Using Support Vector Machine Based on the Artificial Fish-Swarm Algorithm
,”
J. Low Freq. Noise Vib. Active Control
,
39
(
4
), pp.
954
967
.
31.
Zhang
,
W.
,
Peng
,
G.
,
Li
,
C.
,
Chen
,
Y.
,
Zhang
,
Z.
, and
Wang
,
X.
,
2017
, “
A New Deep Learning Model for Fault Diagnosis With Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals
,”
Sensors
,
17
(
2
), p.
425
.
32.
Liu
,
H.
,
Zhou
,
J.
,
Zheng
,
Y.
,
Jiang
,
W.
, and
Zhang
,
Y.
,
2018
, “
Fault Diagnosis of Rolling Bearings With Recurrent Neural Network-Based Autoencoders
,”
ISA Trans.
,
77
(
1
), pp.
167
178
.
33.
Zhuang
,
Z.
,
Lv
,
H.
,
Xu
,
J.
,
Huang
,
Z.
, and
Qin
,
W.
,
2019
, “
A Deep Learning Method for Bearing Fault Diagnosis Through Stacked Residual Dilated Convolutions
,”
Appl. Sci.
,
9
(
9
), p.
1823
.
34.
Vapnik
,
V.
,
2010
,
The Nature of Statistical Learning Theory
,
Springer
,
New York
.
35.
Hu
,
G.
,
2013
,
Introduction to Digital Signal Processing
, 2nd ed.,
Tsinghua University Press
,
Beijing
, pp.
22
24
.
36.
Lee
,
J.
,
Qiu
,
H.
,
Yu
,
G.
, and
Lin
,
J.
,
2007
, “
Rexnord Technical Services, “Bearing Data Set,” IMS, University of Cincinnati, NASA Ames Prognostics Data Repository
,”
NASA Ames Research Center
,
Moffett Field, CA
. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
37.
Loparo
,
K.
,
2003
, “
Bearings Vibration Data Set
,”
Case Western Reserve University
. https://csegroups.case.edu/bearingdatacenter/pages/download-data-file
38.
Gupta
,
P.
, and
Pradhan
,
M. K.
,
2017
, “
Fault Detection Analysis in Rolling Element Bearing: A Review
,”
Mater. Today: Proc.
,
4
(
2
, Part A), pp.
2085
2094
.
39.
Li
,
H.
,
Li
,
Y.
, and
Yu
,
H.
,
2019
, “
A Novel Health Indicator Based on Cointegration for Rolling Bearings’ Run-to-Failure Process
,”
Sensors
,
19
(
9
), p.
2151
.
40.
Williams
,
T.
,
Ribadeneira
,
X.
,
Billington
,
S.
, and
Kurfess
,
T.
,
2001
, “
Rolling Element Bearing Diagnostics in Run-to-Failure Lifetime Testing
,”
Mech. Syst. Signal Process.
,
15
(
5
), pp.
979
993
.
You do not currently have access to this content.