The ability of coated particles of enriched uranium dioxide fuel encased in graphite to discontinue nuclear fission reaction without human action in the case of complete loss of cooling is a vital safety measure over traditional nuclear fuel. As a possible solution toward enhancing the safety of light water reactors (LWRs), it is envisaged that the fuel, in the form of loose, coated particles in a helium atmosphere, can be used inside the cladding tubes of the fuel elements. This study is therefore a first step toward understanding the heat-transfer characteristics under natural convective conditions within the fuel cladding tubes of such a revolutionary new fuel design. The coated particle fuels are treated as a bed, from which the heat is transferred to the cladding tube and the gas movement occurs due to natural convection. A basic unit cell model was used where a single unit of the packed bed was analyzed and taken as representative of the entire bed. The model is a combination of both analytical and numerical methods accounting for the thermophysical properties of sphere particles, the interstitial gas effect, gas temperature, contact interface between particles, particle size, and particle temperature distribution used in this study to investigate the heat-transfer effect. The experimental setup was a packed bed heated from below with gas circulation due to natural convection. This allows for the development of an appropriate, conservative thermal energy balance that can be used in determining the heat-transfer characteristics in homogeneous porous media. Success in this method, when validated with suitable correlation, such as Gunn, suggests that the heat-transfer phenomenon/characteristics in the fuel cladding tube of the new design can be evaluated using this approach for design purpose.

References

1.
Balakrishnan
,
A. R.
, and
Pei
,
D. C.
,
1979
, “
Heat Transfer in Gas-Solid Packed Bed Systems
,”
Ind. Eng. Chem. Process Des. Dev.
,
18
(
1
), pp. 
40
46
.10.1021/i260069a004
2.
Siu
,
W. W. M.
, and
Lee
,
S. H.-K.
,
2004
, “
Transient Temperature Computation of Particles in Three-Dimensional Random Packings
,”
Int. J. Heat Mass Transfer.
,
47
(
5
), pp. 
887
898
.10.1016/j.ijheatmasstransfer.2003.08.022
3.
Balakrishnan
,
A. R.
, and
Pei
,
D. C.
,
1978
, “
Heat Transfer in Gas-Solid Packed Bed Systems—A Critical Review
,”
Ind. Eng. Chem. Process Des. Dev.
,
18
(
1
), pp. 
30
40
.10.1021/i260069a003
4.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2006
, “
Effective Thermal Conductivity of Rough Spherical Packed Beds
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp. 
3691
3701
.10.1016/j.ijheatmasstransfer.2006.02.021
5.
Van Antwerpen
,
W.
,
Du Toit
,
C. G.
, and
Rousseau
,
P. G.
,
2010
, “
A Review of Correlations to Model the Packing Structure and Effective Thermal Conductivity in Packed Beds of Mono-Sized Spherical Particles
,”
Nucl. Eng. Des.
,
240
(
7
), pp. 
1803
1818
.10.1016/j.nucengdes.2010.03.009
6.
Chen
,
C. K.
, and
Tien
,
C. L.
,
1973
, “
Conductance of Packed Particles in Vacuum
,”
J. Heat Transfer.
,
95
(
3
), pp. 
302
308
.10.1115/1.3450056
7.
Yovanovich
,
M. M.
,
1973
, “
Apparent Conductivity of Glass Microspheres From Atmospheric Pressure to Vacuum
,”
Heat Transfer Conference
,
Atlanta, GA
,
ASME-AIChE
,
New York
, ASME Paper 73-HT-43.
8.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
, 2nd ed.,
Springer
,
New York
.
9.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
, 3rd ed.,
Springer
,
New York
.
10.
Du Toit
,
C. G.
, and
Rousseau
,
P. G.
,
2012
, “
Modeling the Flow and Heat Transfer in a Packed Bed High Temperature Gas-Cooled Reactor in the Context of a Systems CFD Approach
,”
ASME J. Heat Transfer.
,
134
(
3
), pp. 
031015-1
031015-12
.10.1115/1.4005152
11.
Van Antwerpen
,
W.
,
Rousseau
,
P. G.
, and
Du Toit
,
C. G.
,
2012
, “
Multi-Sphere Unit Cell Model to Calculate the Effective Thermal Conductivity in Packed Pebble Beds of Mono-Sized Spheres
,”
Nucl. Eng. Des.
,
247
(
1
), pp. 
183
201
.
12.
Siu
,
W. W. M.
, and
Lee
,
S. H.-K.
,
2000
, “
Transient Effect on the Constriction Resistance Between Particles
,”
Comput. Mech.
,
25
(
1
), pp. 
59
65
.10.1007/s004660050015
13.
Noah
,
O. O.
,
Slabber
,
J. F.
, and
Meyer
,
J. P.
,
2013
, “
Experimental Evaluation of Natural Convection Heat Transfer in Packed Beds Contained in Slender Cylindrical Geometries
,”
Proceedings of the 5th International Conference on Applications of Porous Media
,
Romania
,
Presa Universitară Clujeană
,
Cluj-Napoca, Romania
, pp. 
301
316
.
14.
Rumpf
,
J.
,
1958
, “
Grundlagen und Methoden des Granulierens
,”
Chem. Ing. Tech.
,
30
(
12
), pp. 
144
158
.10.1002/cite.330300307
15.
Meissner
,
H. P.
,
Micheals
,
A. S.
, and
Kaiser
,
R.
,
1964
, “
Crushing Strength of Zinc Oxide Agglomerates
,”
Ind. Eng. Chem. Process Des. Dev.
,
3
(
1
), pp. 
202
205
.
16.
Ridgeway
,
K.
, and
Tarbuck
,
K. J.
,
1968
, “
Voidage Fluctuations in Randomly-Packed Beds of Spheres Adjacent to a Containing Wall
,”
Chem. Eng. Sci.
,
23
(
9
), pp. 
1147
1155
.
17.
Suzuki
,
M.
,
Makino
,
K.
,
Yamada
,
M.
, and
Iinoya
,
K.
,
1981
, “
A Study on the Coordination Number in a System of Randomly Packed, Uniform-sized Spherical Particles
,”
Int. Chem. Eng.
,
21
(
1
), pp. 
482
488
.
18.
Timoshenko
,
S. P.
, and
Goodie
,
J. N.
,
1970
,
Theory of Elasticity
,
McGraw-Hill Book Company
,
New York
, Article 140.
19.
Yovanovich
,
M. M.
, and
Marotta
,
E. E.
,
2003
, “Thermal Spreading and Contact Resistances,”
Heat Transfer Handbook
, A. Bejan, and D. Kraus, eds.,
John Wiley and Sons Inc.
,
Hoboken, NY
, Chap. 4.
20.
Bahrami
,
M.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2004
, “
Thermal Joint Resistance of Non-conforming Rough Surfaces with Gas-filled Gaps
,”
AIAA J. Thermophys. Heat Transfer
,
18
(
3
), pp. 
326
332
.10.2514/1.5482
21.
Achenbach
,
E.
,
1995
, “
Heat and Fluid Flow Characteristics of Packed Beds
,”
Therm. Fluid Sci.
,
10
(
1
), pp. 
17
27
.10.1016/0894-1777(94)00077-L
22.
Hoffmann
,
J. E.
,
2004
, “
Validation and Verification of CFD Simulation at PBMR
,”
Proceedings at the 4th South African Conference on Applied Mechanic
,
Johannesburg
,
SACAM
,
Muldersdrift, Johannesburg, South Africa
, Vol. 
2
, p. 
19
.
23.
Robold
,
K.
,
1982
, “
Wärmetransport im inneren und in der randzone von kugelschüttungen
,”
Kernforschungsanlage Jülich GmbH
, 19, Tech. Rep. 1976.
24.
Zehner
,
P.
, and
Schlünder
,
E. U.
,
1970
, “
Wärmeleitfähigkeit von schüttungen bei mäBigen Temperaturen
,”
Chem. Ing. Tech.
,
2
(
1
), pp. 
933
941
.10.1002/(ISSN)1522-2640
25.
IAEA TECDOC-1163
,
2000
, “
Heat Transport and After Heat Removal for Gas Cooled Reactors Under Accident Conditions
,”
International Atomic Energy Agency
.
26.
Kaviany
,
M.
,
1991
,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
27.
Breitbach
,
G.
, and
Barthels
,
H.
,
1980
, “
The Radiation Heat Transfer in the HTR Core After Failure of the Afterheat Removal System
,”
Nucl. Tech.
,
49
(
1
), pp. 
392
399
.
28.
Bauer
,
R.
, and
Schlünder
,
E. U.
,
1978
, “
Effective Radial Thermal Conductivity of Packings in Gas Flow. Part 2: Thermal Conductivity of the Packing Fraction Without Gas Flow
,”
Int. Chem. Eng.
,
18
(
2
), pp. 
189
204
.
29.
Tien
,
C.-L.
,
1988
, “
Thermal Radiation in Packed and Fluidized Beds
,”
J. Heat Transfer
,
110
(
4b
), pp. 
1230
1242
.10.1115/1.3250623
30.
Kaviany
,
M.
, and
Singh
,
B. P.
,
1993
, “
Radiative Heat Transfer in Porous Media
,”
Adv. Heat Transfer.
,
23
(
1
), pp. 
133
186
.10.1016/S0065-2717(08)70006-6
31.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass To Particles in Fixed and Fluidised Beds
,”
Int. J. Heat Mass Transfer.
,
21
(
4
), pp. 
467
476
.10.1016/0017-9310(78)90080-7
32.
Kugeler
,
K.
,
2009
, “
HTR Technology
,”
NUCI 878 EB Study Guide
,
North-West University
,
Potchefstroom
.
33.
Koster
,
A
,
Matzner
,
H. D.
, and
Nicholsi
,
D. R.
,
2003
, “
PBMR Design for the Future
,”
Nucl. Eng. Des.
,
222
(
2–3
), pp.
231
245
.
34.
Noah
,
O. O.
,
Slabber
,
J. F.
, and
Meyer
,
J. P.
,
2015
, “
Experimental and Theoretical Investigation of the Natural Convection Heat Transfer from Heated Micro-Spheres in a Slender Cylindrical Geometry
,” Ph.D. Thesis,
University of Pretoria
,
Pretoria, South Africa
.
You do not currently have access to this content.