Abstract

Nuclear forensics is the interdisciplinary branch of forensic science that deals with the analysis and examination of nuclear or other radioactive materials, or of evidence that is contaminated with radionuclides in the context of legal proceedings under international or national law related to nuclear security. To control and avoid the threat of terrorism posed by illicit trafficking and mismanagement, nuclear and other radioactive materials must be strictly regulated. Thus, the goal of nuclear forensic analysis is to discover what radioactive materials were confiscated, how, when, and where they were manufactured, and what their intended applications were. Nuclear forensic scientist has a wide array of analytical tools to use for detecting signatures in radioactive materials. These individual techniques can be sorted into three broad categories: bulk analysis tools, imaging tools, and micro-analysis tools. Particular interest in nuclear forensics is particle morphology, isotopic composition of a material, presence of impurities, and microstructure. These properties can vary between materials of different origins due to varying processing or geological conditions, thus, allowing for discrimination of material history and prediction of provenance. This review article presents many key analytical techniques and discusses the main application and challenges of the most common techniques currently used in nuclear forensics analysis.

References

1.
Moody
,
K. J.
,
Grant
,
P. M.
,
Hutcheon
,
I. D.
, and
Grant
,
P. M.
,
2015
,
Nuclear Forensics Analysis
, 2nd ed.,
Taylor and Francis Group
,
Boca Raton, FL
.
2.
Kristo
,
M. J.
,
Gaffney
,
A. M.
,
Marks
,
N.
,
Knight
,
K.
,
Cassata
,
W. S.
, and
Hutcheon
,
I. D.
,
2016
, “
Nuclear Forensic Science:Analysis of Nuclear Material Out of Regulatory Control
,”
Annu. Rev. Earth Planet. Sci.
,
44
(
1
), pp.
555
579
.10.1146/annurev-earth-060115-012309
3.
IAEA-TECDOC-1452
,
2005
,
Management of High Enriched Uranium for Peaceful Purposes
,
IAEA
,
Vienna, Austria
.
4.
Moody
,
K. J.
,
Grant
,
P. M.
, and
Hutcheon
,
I. D.
,
2005
,
Nuclear Forensics Analysis
,
Taylor & Francis Group
,
New York
.
5.
Klaus
,
M.
,
Maria
,
W.
, and
Zsolt
,
V.
,
2013
, “
Nuclear Forensic Science: Correlating Measurable Material Parameters to the History of Nuclear Material
,”
Chem. Rev.
,
113
, pp.
884
900
.10.1021/cr300273f
6.
L'Annunziata
,
M. F.
, ed.,
2020
,
Handbook of Radioactivity Analysis
, 3rd ed.,
Elsevier Inc
., Amsterdam, The Netherlands.
7.
Grant
,
P. M.
,
Moody
,
K. J.
,
Hutcheon
,
I. D.
,
Phinney
,
D. L.
,
Whipple
,
R. E.
,
Haas
,
J. S.
,
Alcaraz
,
A.
, et al.,
1998
, “
Nuclear Forensics in Law Enforcement Applications
,”
J. Radioanal. Nucl. Chem.
,
235
(
1–2
), pp.
129
132
.10.1007/BF02385950
8.
Wallenius
,
M.
,
Mayer
,
K.
, and
Ray
,
I.
,
2006
, “
Nuclear Forensic Investigations: Two Case Studies
,”
Forensic Sci. Int.
,
156
(
1
), pp.
55
62
.10.1016/j.forsciint.2004.12.029
9.
International Atomic Energy Agency
,
2015
,
Nuclear Forensics in Support of Investigations
,
International Atomic Energy Agency
,
Vienna
.
10.
Varga
,
Z.
,
Wallenius
,
M.
,
Krachler
,
M.
,
Rauff-Nisthar
,
N.
,
Fongaro
,
L.
,
Knott
,
A.
,
Nicholl
,
A.
, and
Mayer
,
K.
,
2022
, “
Trends and Perspectives in Nuclear Forensic Science
,”
TrAC Trends Anal. Chem.
,
146
, p.
116503
.10.1016/j.trac.2021.116503
11.
Suresh
,
K. A.
,
2016
, “
Nuclear Forensics: What, Why and How?
,”
JSTOR
,
110
(
5
), pp.
782
791
.https://www.jstor.org/stable/24907960
12.
Dias
,
M. S.
,
Mattos
,
J. R. L. D.
, and
Andrade
,
E. P. D.
,
2017
, “
The Gd-Isotopic Fuel for High Burnup in PWR's
,”
International Nuclear Atlantic Conference
, Belo Horizonte, MG, Brazil, Oct. 22–27, pp.
1
13
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/48/103/48103589.pdf
13.
Maria
,
W.
,
Klaus
,
L.
,
Klaus
,
M.
, and
Zsolt
,
V.
,
2018
, “
Actinides: Nuclear Forensics
,”
Encyclopedia of Inorganic and Bioinorganic Chemistry
, Wiley, Hoboken, NJ.10.1002/9781119951438.eibc2566
14.
Reading
,
D. G.
,
2016
, “
Nuclear Forensics: Determining the Origin of Uranium Ores and Uranium Ore
,” Doctoral dissertation,
University of Southampton
,
Southampton
.
15.
Technical Guidance
,
2006
,
Nuclear Forensics Support
, Vol.
2
,
International Atomic Energy Agency
, Vienna, Austria.
16.
Keegan
,
E.
,
Kristo
,
M. J.
,
Toole
,
K.
,
Kips
,
R.
, and
Young
,
E.
,
2016
, “
Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations
,”
Anal. Chem.
,
88
(
3
), pp.
1496
1505
.10.1021/acs.analchem.5b02915
17.
Mayer
,
K.
,
Wallenius
,
M.
, and
Fanghanel
,
T.
,
2007
, “
Nuclear Forensic Science—From Cradle to Maturity
,”
J. Alloys Compd.
,
444–445
, pp.
50
56
.10.1016/j.jallcom.2007.01.164
18.
Pöllänen
,
R.
,
Ketterer
,
M. E.
,
Lehto
,
S.
,
Hokkanen
,
M.
,
Ikäheimonen
,
T. K.
,
Siiskonen
,
T.
,
Moring
,
M.
,
Montero
,
M. R.
, and
Sánchez
,
A. M.
,
2006
, “
Multi-Technique Characterization of a Nuclearbomb Particle From the Palomares Accident
,”
J. Environ. Radioact.
,
90
(
1
), pp.
15
28
.10.1016/j.jenvrad.2006.06.007
19.
LaMont
,
S. P.
, and
Hall
,
G.
,
2005
, “
Uranium Age Determination by Measuring the 230Th/234 U Ratio
,”
J. Radioanal. Nucl. Chem.
,
264
(
2
), pp.
423
427
.
20.
Wallenius
,
M.
, and
Mayer
,
K.
,
2000
, “
Age Determination of Plutonium Material in Nuclear Forensics by Thermal Ionisation Mass Spectrometry
,”
J. Anal. Chem.
,
366
(
3
), pp.
234
238
.10.1007/s002160050046
21.
Ravi K
,
P.
,
Sreejith
,
S. R.
,
Mishra
,
S.
,
Suman
,
S. K.
,
Pillai
,
A. K. S.
, and
S
,
M.
,
2022
, “
Application of Radio-Analytical Technique for Determination of “Age” of Nuclear Materials for Nuclear Forensics
,”
J. Radiat.
,
15
(
1
), pp.
213
218
.10.1016/j.jrras.2022.03.007
22.
Krane
,
K. S.
,
1991
,
Introductory Nuclear Physics
,
Wiley
, Hoboken, NJ.
23.
Morse
,
E. C.
,
2016
, “
Analytical Methods for Nonproliferation
,”
Advanced Sciences and Technologies for Security Applications
, Springer International Publishing, Cham, Switzerland, pp.
93
105
.
24.
Cowan
,
G. A.
, and
Adler
,
H. H.
,
1976
, “
The Variability of the Natural Abundance of U-235
,”
Geochim. Cosmochim. Acta
,
40
, pp.
1487
1490
.10.1016/0016-7037(76)90087-9
25.
Weyer
,
S.
,
Anbar
,
A. D.
,
Gerdes
,
A.
,
Gordon
,
G. W.
,
Algeo
,
T. J.
, and
Boyle
,
E. A.
,
2008
, “
Natural Fractionation of U-238/U-235
,”
Geochim. Cosmochim. Acta
,
72
, pp.
345
359
.10.1016/j.gca.2007.11.012
26.
Peehs
,
M.
,
Walter
,
T.
, and
Walter
,
S.
,
1996
,
Ullman's Encyclopedia of Industrial Chemistry
,
Wiley-VCH
,
Cambridge
.
27.
Rydberg
,
J.
ed.,
2004
,
Solvent Extraction Principles and Practice
,
Taylor & Francis Group, LLC
,
New York
.
28.
Philip Horwitz
,
E.
,
McAlister
,
D. R.
, and
Dietz
,
M. L.
,
2006
, “
Extraction Chromatography Versus Solvent Extraction: How Similar Are They?
,”
Sep. Sci. Technol.
,
41
(
10
), pp.
2163
2182
.10.1080/01496390600742849
29.
Wallenius
,
M.
,
Morgenstern
,
A.
,
Apostolidis
,
C.
, and
Mayer
,
K.
,
2002
, “
Determination of the Age of Highly Enriched Uranium
,”
Anal. Bioanal. Chem.
,
374
(
3
), pp.
379
384
.10.1007/s00216-002-1555-9
30.
Ryu
,
J.
,
Park
,
J. Y.
,
Lee
,
H. W.
,
Kim
,
H.
, and
Chae
,
J. S.
,
2021
, “
Experimental Characterization of Alpha Spectrometer for Optimization of Operational Parameters Affecting Energy Resolution and Detection Efficiency
,”
J. Radioanal. Nucl. Chem.
,
329
(
2
), pp.
959
967
.10.1007/s10967-021-07821-w
31.
Hafızoğlu
,
N.
,
2021
, “
The Characterisation of an Alpha Spectrometry System Using a Certificated Standard Source
,”
J. Sci. Technol.
,
31
, pp.
928
932
.10.31590/ejosat.979887
32.
Vajda
,
N.
, and
Kim
,
C. K.
,
2010
, “
Determination of Pu Isotopes by Alpha Spectrometry: A Review of Analytical Methodology
,”
J. Radioanal. Nucl. Chem.
,
283
(
1
), pp.
203
223
.10.1007/s10967-009-0342-x
33.
L'Annunziata
,
M. F.
,
2020
,
Handbook of Radioactivity Analysis
,
Academic Press, Elsevier
, Amsterdam, The Netherlands.
34.
Ferreira Filho
,
A. L.
,
da Silva
,
R.
,
da Cruz
,
P. A. L.
,
da Silva
,
C. J.
,
Poledna
,
R.
,
Araújo
,
M. T. F.
,
Arcanjo
,
C. F.
,
Delgado
,
J. U.
, and
Lopes
,
R. T.
,
2018
, “
Application of the Sum-Peak Method to Activity Standardizations of 152Eu Sources in LNMRI (BR)
,”
Appl. Radiat. Isot.
,
134
, pp.
340
350
.10.1016/j.apradiso.2017.09.041
35.
Arnold
,
D.
,
Debertin
,
K.
,
Heckel
,
A.
,
Kanisch
,
G.
,
Wershofen
,
H.
, and
Wilhelm
,
C.
,
2018
, “
Fundamentals of Gamma Spectrometry
,” ISSN
1865–8725
.https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Strahlenschutz/Messanleitungen_2022/gamma_spekt_grundl_v2018-03_en_bf.pdf
36.
Buchtela
,
K.
,
2005
, “
RADIOCHEMICAL METHODS|Gamma-Ray Spectrometry
,”
Encyclopedia of Analytical Science
, Elsevier - Amsterdam, The Netherlands, pp. 72–79.10.1016/B0-12-369397-7/00525-2
37.
Coomber
,
D.
,
1975
,
Radiochemical Methods in Analysis
,
Plenum Press
,
New York
.
38.
Kazmiruk
,
V.
,
2012
,
Scanning Electron Microscopy
,
Intech
,
Croatia
.
39.
Wikipedia, 2023, “
Scanning electron microscope
,” Wikipedia, San Francisco, CA, accessed Oct. 28, 2024, https://en.wikipedia.org/wiki/Scanning_electron_microscope
40.
Faith
,
M.
,
2022
, “
Scanning Electron Microscope (SEM)- Definition
,” Principle, Parts, Images, Vol.
11
,
A.
Sagar
, ed.,
Microbe Notes
, Kathmandu, Nepal.https://microbenotes.com/scanning-electron-microscope-sem/
41.
Zhou
,
W.
,
Apkarian
,
R.
,
Wang
,
Z. L.
, and
Joy
,
D.
, “
Fundamentals of Scanning Electron Microscopy (SEM)
,” Scanning Microscopy for Nanotechnology,
Springer
, New York, NY, pp.
1
40
.10.1007/978-0-387-39620-0_1
42.
Weilie
,
Z.
, and
Zhong
,
L. W.
,
2006
,
Scanning Microscopy for Nanotechnology
,
Springer Science & Business Media, LLC
, Berlin, Germany.
43.
Goldstein
,
J. I.
,
Newbury
,
D. E.
,
Michael
,
J. R.
,
Ritchie
,
N. W.
,
Scott
,
J. H. J.
, and
Joy
,
D. C.
,
2003
,
Scanning Electron Microscopy and X-Ray Microanalysis
,
Springer
, Berlin, Germany.
44.
Schwartz, D. S., 2013, “Infl Guideline on X-ray Diffraction (XRD),” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-UR-13-27583
.10.2172/1095199
45.
Inaba
,
K.
,
Kobayashi
,
S.
,
Uehara
,
K.
,
Okada
,
A.
,
Reddy
,
S. L.
, and
Endo
,
T.
,
2013
, “
High Resolution X-Ray Diffraction Analyses of (La,Sr) MnO3/ZnO/Sapphire (0001) Double Heteroepitaxial Films
,”
Adv. Mater. Phys. Chem.
,
03
(
1
), pp.
72
89
.10.4236/ampc.2013.31A010
46.
Harrington
,
G. F.
, and
Santiso
,
J.
,
2021
, “
Back-to-Basics Tutorial: X-Ray Diffraction of Thin Films
,”
Electroceramics
,
47
(
4
), pp.
141
163
.10.1007/s10832-021-00263-6
47.
Cameron
,
L. T.
, and
Chien-Hung
,
C.
,
2018
, “
Measurement of UO2 Surface Oxidation Using Grazing-Incidence X-Ray Diffraction: Implications for Nuclear Forensics
,”
J. Nucl. Mater.
,
502
, pp.
68
75
.10.1016/j.jnucmat.2018.01.052
48.
Weise
,
H. P.
,
Görner
,
W.
, and
Hedrich
,
M.
,
2001
, “
Determination of Elements by Nuclear Analytical Methods
,”
J. Anal. Chem.
,
369
(
1
), pp.
8
14
.10.1007/s002160000626
49.
Kraiem
,
M.
,
Mayer
,
K.
,
Gouder
,
T.
,
Seibert
,
A.
,
Wiss
,
T.
, and
Hiernaut
,
J. P.
,
2010
, “
Filament Chemistry of Uranium in Thermal Ionisation Mass Spectrometry
,”
J. Anal. At. Spectrom.
,
25
(
7
), pp.
1138
1144
.10.1039/c003745a
50.
Akio, M., 2016, “Thermal Ionization Mass Spectrometry (TIMS),” Wiley, Hoboken, NJ.
51.
Mazarakioti
,
E. C.
,
Zotos
,
A.
,
Thomatou
,
A.-A.
,
Kontogeorgos
,
A.
,
Patakas
,
A.
, and
Ladavos
,
A.
,
2022
, “
Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), a Useful Tool in Authenticity of Agricultural Products' and Foods' Origin
,”
Food
,
11
(
22
), p.
3705
.10.3390/foods11223705
52.
Nisi
,
S.
,
Copia
,
L.
,
Dafinei
,
I.
, and
Vacri
,
M.
,
2017
, “
ICP-MS Measurement of Natural Radioactivity at LNGS
,”
Int. J. Mod. Phys. A
,
32
(
30
), p.
1743003
.10.1142/S0217751X17430035
53.
Scott
,
C. W.
, and
Matthew
,
R. B.
,
2019
, “
Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects
,”
Clin. Biochem. Rev.
,
40
(
3
), pp.
115
133
.10.33176/AACB-19-00024
54.
Douthitt
,
C. B.
,
2008
, “
The Evolution and Applications of Multicollector ICPMS (MC-ICPMS)
,”
Anal. Bioanal. Chem.
,
390
(
2
), pp.
437
440
.10.1007/s00216-007-1660-x
55.
Yang
,
L.
,
2009
, “
Accurate and Precise Determination of Isotopic Ratios by MC-ICP-MS: A Review
,”
Mass Spectrom. Rev.
,
28
(
6
), pp.
990
1011
.10.1002/mas.20251
56.
Paul
,
W.
,
Alan
,
T.
, and
Colin
,
P.
,
2004
,
Encyclopedia of Analytical Science
,
Elsevier
,
New York
.
57.
Marcovecchio
,
J. E.
,
Botté
,
S. E.
, and
Freije
,
R. H.
,
2007
,
Handbook of Water Analysis Ch11-273-310
,
Taylor & Francis Group
,
New York
.
58.
Biswajit
,
S.
, and
Purushottam
,
C.
,
2009
, “
Inelastic Ion-Surface Collisions: Understanding Secondary Emission of Molecular Ions
,”
J. Phys. Conf. Ser.
185
(
1
), p.
012039
.10.1088/1742-6596/185/1/012039
59.
Michael
,
R. S.
, and
Reto
,
T.
,
2019
,
“Resonance Ionization Mass Spectrometry (RIMS): Fundamentals and Applications Including Secondary Neutral Mass Spectrometry,”
Photoionization and Photo‐Induced Processes in Mass Spectrometry
: Fundamentals and Applications, Wiley, Hoboken, NJ, pp. 215–24410.1002/9783527682201.ch6.
60.
Smith
,
C. F.
, and
Isselhardt
,
B. H.
,
2019
, “
Resonance Ionization Mass Spectrometry for Post-Detonation Nuclear Forensics
,”
Lawrence Livermore National Laboratory (LLNL), Naval Postgraduate School
,
Livermore, CA, Monterey, CA
, Report No. LLNL-TR-791397.
61.
Craig
,
F. S.
, and
Brett
,
I.
,
2019
, “
Resonance Ionization Mass Spectrometry for Post-Detonation Nuclear Forensics
,”
Lawrence Livermore National Laboratory
, Livermore, CA, Report No.
LLNL-TR-791397; 986191
.10.2172/1567997
62.
Vogl
,
J.
, and
Pritzkow
,
W.
,
2010
, “
Isotope Dilution Mass Spectrometry—A Primary Method of Measurement and Its Role for RM Certification
,”
Mapan
,
25
(
3
), pp.
135
164
.10.1007/s12647-010-0017-7
63.
Jochen
,
V.
,
2007
, “
Characterisation of Reference Materials by Isotope Dilution Mass Spectrometry
,”
J. Anal. At. Spectrom.
,
22
, pp.
475
492
.10.1039/b614612k
64.
Stephen
,
J. P.
,
2011
,
Scanning Transmission Electron Microscopy: Imaging and Analysis
,
Springer-Verlag
,
New York
.
65.
Nostrand, Princeton, N.J
,
1956
,
Minerals for Atomic Energy: Uranium, Thorium, and Beryllium
, 2nd ed.,
Van Nostrand
,
Princeton, NJ
.
66.
Mayer
,
K.
,
Wallenius
,
M.
,
Lützenkirchen
,
K.
,
Galy
,
J.
,
Varga
,
Z.
,
Erdmann
,
N.
,
Buda
,
R.
,
Kratz
,
J.-V.
,
Trautmann
,
N.
, and
Fifield
,
K.
,
2011
, “
Nuclear Forensics: A Methodology Applicable to Nuclear Security and to Non-Proliferation
,”
J. Phys.: Conf. Ser.
,
312
(
6
), p.
062003
.10.1088/1742-6596/312/6/062003
67.
Pioro
,
I.
,
2023
,
Handbook of Generation IV Nuclear Reactors
, 2nd ed.,
Elsevier – Woodhead Publishing (WP)
,
Kidlington, UK
, p.
1079
.
68.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York
, p.
334
.
69.
Pioro
,
I.
,
Duffey
,
R. B.
,
Kirillov
,
P. L.
, and
Pioro
,
R.
,
2021
, “
Pros and Cons of Commercial Reactor Designs, Section 2: Chapter. Part 1. Current Status of Electricity Generation in the World and Selected Countries
,” in
Encyclopedia of Nuclear Energy
, 1st ed.,
E.
Greenspan
, ed.,
Elsevier
,
UK
, pp.
263
287
.
70.
Pioro
,
I. L.
,
2020
, “
Advanced Supercritical Fluids Technologies
,”
Supercritical-Fluids Thermophysical properties and Heat Transfer in Power-Engineering Applications
,
I.
Pioro
, ed.,
IntechOpen Ltd
.,
London
, pp.
1
42
.
71.
Pioro
,
I.
,
Duffey
,
R. B.
,
Kirillov
,
P. L.
, and
Dort-Goltz
,
N.
,
2020
, “
Current Status of Reactors Deployment and Small Modular Reactors Development in the World
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
4
), p.
044001
.10.1115/1.4047927
72.
Mokry
,
S.
,
Pioro
,
I. L.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
73.
Pioro
,
I. L.
, and
Vorontsova
,
M. V.
,
1987
, “
Calculation of the Limiting Heat Flux for a Liquid Boiling in a Two-Phase Thermal Syphon
,”
J. Eng.-Phys.
,
53
(
3
), pp.
1003
1008
.10.1007/BF00873817
74.
Kichigin
,
A. M.
, and
Pioro
,
I. L.
,
1991
, “
About Crisis Mechanism of Heat Transfer Under Boiling in Conditions of Free Liquid Motion
,”
Prom. Teplotekh.
,
13
(
3
), pp.
19
33
.
75.
Dort-Goltz
,
N.
,
Pioro
,
I.
, and
McKellar
,
J.
,
2021
, “
Specifics of Calculating Thermophysical Properties of Water in Critical Point Using NIST REFPROP Program
,”
Proceedings of the 10th International Symposium on SCWRs (ISSCWR-10)
,
Prague, Czech Republic
, Mar. 15–18, p.
10,
Paper No. P26.
76.
Pioro
,
I.
,
Dort-Goltz
,
N.
, and
McKellar
,
J.
,
2020
, “
Current Status of Nuclear Power in the World Including Latest Developments on SMRs
,”
Proceedings of the 29th International Conference Nuclear Energy for New Europe (NENE-2020)
, Portorož, Slovenia, Sept. 7–10, p.
409
.
77.
Pioro
,
I.
,
2019
, “
Current Status and Future Developments in Nuclear-Power Industry of the World
,”
Proceedings of the International Conference on Climate Change and the Role of Nuclear Power
, IAEA, Vienna, Austria, Oct. 7–11, Paper No. CN275-42, pp.
100
104
.
78.
IAEA-TECDOC-1900
,
2020
, “
Understanding and Prediction of Thermohydraulic Phenomena Relevant to Supercritical Water Cooled Reactors (SCWRs)
,” Final Report of Coordinated Research Project, IAEA TECDOC Series, Vienna, Austria, Report No.
IAEA-TECDOC-1900
.https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1900web.pdf
79.
Pioro
,
I.
,
Mokry
,
S.
,
Farah
,
A.
,
King
,
K.
,
Peiman
,
W.
,
Richards
,
G.
, and
Harvel
,
G.
,
2010
, “
Alternative Fuel-Channel Design for SCWR
,”
Heat Transfer to Fluids at Supercritical Pressures, Report for NSERC/NRCan/AECL Generation IV Energy Technologies Program (NNAPJ) Entitled
,
Atomic Energy of Canada Limited
,
UOIT, Oshawa, ON, Canada
, p.
41
.
80.
Canton, H., 2020. “International Atomic Energy Agency—IAEA,” The Europa Directory of International Organizations 2020, Routledge, London, UK, pp.
305
314
.
You do not currently have access to this content.