Available computational fluid dynamics (CFD) predictions of pressure distributions in the vertical bypass flow between blocks in a prismatic gas-cooled reactor (GCR) have been analyzed to deduce apparent friction factors and loss coefficients for nuclear engineering systems and network codes. Calculations were performed for vertical gap spacings “s” of 2, 6, and 10 mm — representing 1, 3, and 5 mm in a GCR design, horizontal gaps between the blocks of 2 mm and two flow rates, giving a range of vertical gap Reynolds numbers ReDh of about 40–5300. The present focus is on the examination of the flow in the vertical gaps. Horizontal gaps are treated in CFD calculations but their flows are not examined. Laminar predictions of the fully developed friction factor ffd were about 3–10% lower than the classical infinitely wide channel. In the entry region, the local apparent friction factor was slightly higher than the classic idealized case, but the hydraulic entry length Lhy was approximately the same. The per cent reduction in flow resistance was greater than the per cent increase in flow area at the vertical corners of the blocks. The standard kϵ turbulence model was employed for flows expected to be turbulent. Its predictions of ffd and flow resistance were significantly higher than direct numerical simulations (DNS) for the classic case; the value of Lhy was about 30 gap spacings. Initial quantitative information for entry coefficients and loss coefficients for the expansion–contraction junctions between blocks is also presented. The present study demonstrates how CFD predictions can be employed to provide integral quantities needed in systems and network codes.

References

1.
Melese
,
G.
, and
Katz
,
R.
,
1984
,
Thermal and Flow Design of Helium-Cooled Reactors
,
American Nuclear Society
,
la Grange Park, Ill
.
2.
Takada
,
E.
,
Nakagawa
,
S.
,
Fujimoto
,
N.
, and
Tochio
,
D.
,
2004
, “
Core Thermal-Hydraulic Design
,”
Nucl. Eng. Des.
,
233
(
1–3
), pp. 
37
43
. 0029-549310.1016/j.nucengdes.2004.07.009
3.
Yoon
,
S.-J.
,
Cho
,
Y.-J.
,
Kim
,
K.-Y.
,
Kim
,
M.-H.
,
Lee
,
W.-J.
, and
Park
,
G. C.
,
2007
, “
Experimental Evaluation of the Bypass Flow in the VHTR Core
,” , Toronto, Aug. 12–17,
International Association for Structural Mechanics in Reactor Technology, North Carolina State University
, Raleigh, N. C. 27695-7908
4.
Yoon
,
S.-J.
,
Jin
,
C.-Y.
,
Lee
,
W.-J.
, and
Park
,
G. C.
,
2008
, “
Computational Fluid Dynamics Analysis of Core Bypass Flow in Very High Temperature Reactor
,”
Proceedings of the 6th Japan-Korea Symposium. Nuclear Thermal Hydraulics and Safety (NTHAS6)
,
Okinawa
,
Nov. 24–27
,
Atomic Energy Society of Japan and Korean Nuclear Society
, Paper No. 
N6P1108
.
5.
Tak
,
N.-I.
,
Kim
,
M.-H.
, and
Lee
,
W. J.
,
2008
, “
Numerical Investigation of a Heat Transfer Within the Prismatic Fuel Assembly of a Very High Temperature Reactor
,”
Ann. Nucl. Energy
,
35
(
10
), pp. 
1892
1899
. 0306-454910.1016/j.anucene.2008.04.005
6.
Sato
,
H.
,
Johnson
,
R. W.
, and
Schultz
,
R. R.
,
2010
, “
Computational Fluid Dynamic Analysis of Core By-Pass Flow Phenomena in a Prismatic VHTR
,”
Ann. Nucl. Energy
,
37
(
9
), pp. 
1172
1185
. 0306-454910.1016/j.anucene.2010.04.021
7.
Johnson
,
R. W.
, and
Sato
,
H.
,
2010
, “
Bypass Flow Computations Using a One-Twelfth Symmetric Sector for Normal Operation in a 350 MWth Prismatic VHTR
,”
International Topical Meeting on High Temperature Reactor Technology
,
Prague
,
October
,
European High Temperature Reactor Technology Network
,
Petten, Holland
, Paper No. 
152
.
8.
MacDonald
,
P. E.
,
Sterbentz
,
J. W.
,
Sant
,
R. L.
,
Bayless
,
P. D.
,
Schultz
,
R. R.
,
Gougar
,
H. D.
,
Moore
,
R. L.
,
Ougouag
,
A. M.
, and
Terry
,
W. K.
,
2003
, “
NGNP Preliminary Point Design: Results of the Initial Neutronics and Thermal-Hydraulic Assessments
,” ,
INEEL
.
9.
Lommers
,
L. J.
,
2009
,
Personal Electronic Communication
,
Areva
,
Richland, WA
.
10.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
11.
McEligot
,
D. M.
, and
Jackson
,
J. D.
,
2004
, “
Deterioration Criteria for Convective Heat Transfer in Gas Flow Through Non-Circular Ducts
,”
Nucl. Eng. Des.
,
232
(
3
), pp. 
327
333
. 0029-549310.1016/j.nucengdes.2004.05.004
12.
McEligot
,
D. M.
, and
McCreery
,
G. E.
,
2004
, “
Scaling Studies and Conceptual Experiment Designs for NGNP CFD Assessment
,” ,
Idaho National Engineering and Environmental Laboratory
,
Idaho Falls, Ida
.
13.
Vilim
,
R. B.
,
2009
, “
Assessment of Multi-Dimensional Column-to-Column Radiation Heat Transfer in VHTR Cores
,” , September,
Argonne National Laboratory
,
Lemont, Ill
.
14.
Bayless
,
P. D.
,
2010
,
Personal Communication
,
Idaho National Laboratory
,
Idaho
.
15.
Anderson
,
N. A.
,
Hassan
,
Y.
, and
Schultz
,
R. S.
,
2008
, “
Analysis of the Hot Gas Flow in the Outer Plenum of the Very High Temperature Reactor Using Coupled RELAP5-3D System Code and a CFD Code
,”
Nucl. Eng. Des.
,
238
(
1
), pp. 
274
279
. 0029-549310.1016/j.nucengdes.2007.06.008
16.
Beeny
,
B.
, and
Vierow
,
K.
,
2015
, “
Gas-Cooled Reactor Thermal Hydraulic Analyses With MELCOR
,”
Prog. Nucl. Energy
,
85
(
Nov.
), pp. 
404
414
. 0149-197010.1016/j.pnucene.2015.06.002
17.
Johnson
,
R. W.
,
2011
, “
Pre-Test CFD Calculations for a Bypass Flow Standard Problem
,” , Also available as INL/CON-11-20931 from inldigitallibrary.inl.gov/STI/5223012.pdf or www.osti.gov/scitech/servlets/purl/1034821 at DoE OSTI Information Bridge.
18.
Patel
,
V. C.
, and
Head
,
M. R.
,
1969
, “
Some Observations on Skin Friction and Velocity Profiles in Fully Developed Pipe and Channel Flows
,”
J. Fluid Mech.
,
38
(
1
), pp. 
181
201
. 0022-112010.1017/S0022112069000115
19.
Johnson
,
R. W.
,
2009
, “
Examination of a Proposed Validation Data Set Using CFD Calculations
,” ,
American Society of Mechanical Engineers
,
New York, NY
.
20.
Johnson
,
R. W.
,
McIlroy
,
H. M.
,
Johnson
,
R. C.
, and
Christensen
,
D. P.
,
2010
, “
Undesirable Flow Behavior in a Proposed Validation Data Set
,” ,
American Society of Mechanical Engineers
,
New York, NY
.
21.
Kakac
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
,
1987
,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
.
22.
Schade
,
K. W.
, and
McEligot
,
D. M.
,
1971
, “
Cartesian Graetz Problems With Air Property Variation
,”
Int. J. Heat Mass Transfer
,
14
(
5
), pp. 
653
666
. 0017-931010.1016/0017-9310(71)90226-2
23.
McCreery
,
G. E.
,
2012
,
Personal Electronic Communication
,
Idaho State University
,
Pocatello, Ida
.
24.
McCreery
,
G. E.
,
Tew
,
L. J.
,
Williams
,
B. G.
,
Schultz
,
R. R.
, and
McEligot
,
D. M.
,
2013
, “
MHTGR Core Bypass Flow Patterns and Pressure Losses
,”
NuReTH-15-146
,
Pisa
,
May 12–15
. Also available as INL/CON-12-278335 from inldigitallibrary.inl.gov/sti/5737953.pdf.
25.
Tsukahara
,
T.
,
Seki
,
Y.
,
Kawamura
,
H.
, and
Tochio
,
D.
,
2004
, “
DNS of Turbulent Channel Flow With Very Low Reynolds Numbers
,”
Computational Mechanics, WCCM VI
,
Tsinghua University Press
,
Beijing, China
.
26.
Tsukahara
,
T.
,
Seki
,
Y.
,
Kawamura
,
H.
, and
Tochio
,
D.
,
2004
, “
DNS of Turbulent Heat Transfer at Very Low Reynolds Numbers
,”
Proceedings of the 1st International Forum Heat Transfer
,
Kyoto
,
November
,
Heat Transfer Society Japan
,
Tokyo, Japan
.
27.
Blasius
,
H.
,
1913
, “
Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten
,” , Heft 131, Berlin.
28.
Kays
,
W. M.
,
1966
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
29.
Schlichting
,
H.
,
1968
,
Boundary Layer Theory
, 6th ed.,
McGraw-Hill
,
New York
.
30.
Bejan
,
A.
,
1984
,
Convection Heat Transfer
,
Wiley
,
New York
, p. 
259
.
31.
Zanoun
,
E.-S.
,
Nagib
,
H.
, and
Durst
,
F.
,
2009
, “
Refined cf Relation for Turbulent Channels and Consequences for High-Re Experiments
,”
Fluid Dyn. Res.
,
41
(
2
), pp. 
021405-1
021405-12
. 0169-598310.1088/0169-5983/41/2/021405
32.
Beavers
,
G. S.
,
Sparrow
,
E. M.
, and
Lloyd
,
J. R.
,
1971
, “
Low Reynolds Number Flow in Large Aspect Ratio Rectangular Ducts
,”
J. Basic Eng.
,
93
(
2
), pp. 
296
299
. 0021-922310.1115/1.3425230
33.
Launder
,
B. E.
, and
Priddin
,
C. H.
,
1973
, “
A Comparison of Some Proposals for the Mixing Length Near a Wall
,”
Int. J. Heat Mass Transfer
,
16
(
3
), pp. 
700
702
. 0017-931010.1016/0017-9310(73)90239-1
34.
Mikielewicz
,
D. P.
,
Shehata
,
A. M.
,
Jackson
,
J. D.
, and
McEligot
,
D. M.
,
2002
, “
Temperature, Velocity and Mean Turbulence Structure in Strongly-Heated Internal Gas Flows: Comparison of Numerical Predictions With Data
,”
Int. J. Heat Mass Transfer
,
45
(
21
), pp. 
4333
4352
. 0017-931010.1016/S0017-9310(02)00119-9
35.
He
,
S.
, and
Seddighi
,
M.
,
2015
, “
Turbulence in Transient Channel Flow
,”
J. Fluid Mech.
,
715
, pp. 
60
102
. 0022-112010.1017/jfm.2012.498
36.
Kays
,
W. M.
, and
London
,
A. L.
,
1955
,
Compact Heat Exchangers
,
National Press
,
Palo Alto
.
37.
Kays
,
W. M.
,
1950
, “
Loss Coefficients for Abrupt Changes in Flow Cross Section With Low Reynolds Number Flow in Single and Multiple-Tube Systems
,”
Trans. ASME
,
72
, pp. 
1067
1074
.
38.
Idelchik
,
I. E.
,
1986
,
Handbook of Hydraulic Resistance
, 2nd ed.,
CRC Press, Inc.
,
Boca Raton, FL
.
39.
Hansen
,
A. G.
,
1967
,
Fluid Mechanics
,
Wiley
,
New York
.
40.
Tung
,
Y.-H.
,
Ferng
,
Y.-M.
,
Johnson
,
R. W.
, and
Chieng
,
C.-C.
,
2013
, “
Study of Natural Circulation in a VHTR After a LOFA Using Different Turbulence Models
,”
Nucl. Eng. Des.
,
263
(
Oct.
), pp. 
206
217
. 0029-549310.1016/j.nucengdes.2013.04.009
41.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2009
, “
Pressure Drop in Laminar Developing Flow in Noncircular Ducts: A Scaling and Modeling Approach
,”
J. Fluids Eng.
,
131
(
11
), pp. 
111105-1
111105-11
. 0098-2202
42.
Beavers
,
G. S.
,
Sparrow
,
E. M.
, and
Magnuson
,
R. A.
,
1970
, “
Experiments on the Breakdown of Laminar Flow in a Parallel-Plate Channel
,”
Int. J. Heat Mass Transfer
,
13
(
5
), pp. 
809
815
. 0017-931010.1016/0017-9310(70)90127-4
You do not currently have access to this content.