For the purpose of nuclear safety analysis, a reactive flow solver has been developed to determine the hazardous potential of large-scale hydrogen explosions. Without using empirical transition criteria, the whole combustion process including deflagration-to-detonation transition (DDT) is computed within a single solver framework. In this paper, we present massively parallelized three-dimensional explosion simulations in a full-scale pressurized water reactor (PWR) of the Konvoi type. Several generic DDT scenarios in globally lean hydrogen–air mixtures are examined to assess the importance of different input parameters. It is demonstrated that the explosion process is highly sensitive to mixture composition, ignition location, and thermodynamic initial conditions. Pressure loads on the confining structure show a profoundly dynamic behavior depending on the position in the containment. Computational cost can effectively be reduced through adaptive mesh refinement (AMR).

References

1.
Breitung
,
W.
, and
Royl
,
P.
,
2000
, “
Procedure and Tools for Deterministic Analysis and Control of Hydrogen Behavior in Severe Accidents
,”
Nucl. Eng. Des.
,
202
(2–3), pp.
249
268
.
2.
Manninen
,
M.
,
Silde
,
A.
,
Lindholm
,
I.
,
Huhtanen
,
R.
, and
Sjvall
,
H.
,
2002
, “
Simulation of Hydrogen Deflagration and Detonation in a BWR Reactor Building
,”
Nucl. Eng. Des.
,
211
(
1
), pp.
27
50
.
3.
Dimmelmeier
,
H.
,
Eyink
,
J.
, and
Movahed
,
M.-A.
,
2012
, “
Computational Validation of the EPR Combustible Gas Control System
,”
Nucl. Eng. Des.
,
249
, pp.
118
124
.
4.
Hsu
,
W.-S.
,
Chen
,
H.-P.
, and
Lin
,
H. C.
,
2014
, “
Hydrogen Behavior in a Large-Dry Pressurized Water Reactor Containment Building During a Severe Accident
,”
Tenth International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions
, Bergen, Norway, June 10–14.
5.
Daudey
,
N.
, and
Champasith
,
A.
,
2014
, “
Accidental Hydrogen Release Inside a Nuclear Power Plant: CFD Modelling and Consequence Analysis
,”
Tenth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions
, Bergen, Norway, June 10–14.
6.
Kim
,
J.
, and
Hong
,
S.-W.
,
2015
, “
Analysis of Hydrogen Flame Acceleration in APR1400 Containment by Coupling Hydrogen Distribution and Combustion Analysis Codes
,”
Prog. Nucl. Energy
,
78
, pp.
101
109
.
7.
Dorofeev
,
S. B.
,
Sidorov
,
V. P.
,
Kuznetsov
,
M. S.
,
Matsukov
,
I. D.
, and
Alekseev
,
V. I.
,
2000
, “
Effect of Scale on the Onset of Detonations
,”
Shock Waves
,
10
(
2
), pp.
137
149
.
8.
Sonnenkalb
,
M.
,
2001
, “
Unfallanalysen für DWR vom Typ KONVOI (GKN-2) mit dem Integralcode MELCOR 1.8.4
,” GRS, Köln, Germany, Report No. GRS-A-2954.
9.
Kumar
,
R.
,
Koroll
,
G.
,
Heitsch
,
M.
, and
Studer
,
E.
,
2000
, “
Carbon Monoxide–Hydrogen Combustion Characteristics in Severe Accident Containment Conditions
,” Organisation for Economic Co-operation and Development, Paris, France, Report No.
NEA/CSNI/R(2000)10
.https://www.oecd-nea.org/nsd/docs/2000/csni-r2000-10.pdf
10.
Koroll
,
G.
, and
Mulpuru
,
S.
,
1988
, “
The Effect of Dilution With Steam on the Burning Velocity and Structure of Premixed Hydrogen Flames
,”
Symp. Combust.
,
21
(
1
), pp.
1811
1819
.
11.
Liu
,
D.
, and
MacFarlane
,
R.
,
1983
, “
Laminar Burning Velocities of Hydrogen-Air and Hydrogen-Air Steam Flames
,”
Combust. Flame
,
49
(
1–3
), pp.
59
71
.
12.
Favre
,
A.
,
1965
, “
Equations des gaz Turbulents Compressibles
,”
J. Méc.
,
4
(4), pp.
361
390
.
13.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
14.
Toro
,
E.
,
Spruce
,
M.
, and
Speares
,
W.
,
1994
, “
Restoration of the Contact Surface in the HLL-Riemann Solver
,”
Shock Waves
,
4
(
1
), pp.
25
34
.
15.
Dinkelacker
,
F.
,
Manickam
,
B.
, and
Muppala
,
S.
,
2011
, “
Modelling and Simulation of Lean Premixed Turbulent Methane/Hydrogen/Air Flames With an Effective Lewis Number Approach
,”
Combust. Flame
,
158
(
9
), pp.
1742
1749
.
16.
O'Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.
17.
Goodwin
,
D.
,
Malaya
,
N.
,
Moffat
,
H.
, and
Speth
,
R.
,
2009
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics and Transport Processes
,” Cantera, accessed June 22, 2017, http://www.cantera.org
18.
Ettner
,
F.
,
Vollmer
,
K. G.
, and
Sattelmayer
,
T.
,
2014
, “
Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures
,”
J. Combust.
,
2014
, p. 686347.
19.
Hasslberger
,
J.
,
Ettner
,
F.
,
Boeck
,
L. R.
, and
Sattelmayer
,
T.
,
2013
, “
2D and 3D Flame Surface Analysis of Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen-Air Mixtures With Concentration Gradients
,”
24th International Colloquium on the Dynamics of Explosions and Reactive Systems
(
ICDERS
), Taipei, Taiwan, July 28–Aug. 2.http://www.icders.org/ICDERS2013/PapersICDERS2013/ICDERS2013-0065.pdf
20.
Hasslberger
,
J.
,
Boeck
,
L. R.
, and
Sattelmayer
,
T.
,
2015
, “
Numerical Simulation of Deflagration-to-Detonation Transition in Large Confined Volumes
,”
J. Loss Prev. Process Ind.
,
36
, pp.
371
379
.
21.
Breitung
,
W.
,
Dorofeev
,
S.
,
Kotchourko
,
A.
,
Redlinger
,
R.
,
Scholtyssek
,
W.
,
Bentaib
,
A.
,
L'Heriteau
,
J.-P.
,
Pailhories
,
P.
,
Eyink
,
J.
,
Movahed
,
M.
,
Petzold
,
K.-G.
,
Heitsch
,
M.
,
Alekseev
,
V.
,
Denkevits
,
A.
,
Kuznetsov
,
M.
,
Efimenko
,
A.
,
Okun
,
M.
,
Huld
,
T.
, and
Baraldi
,
D.
,
2005
, “
Integral Large Scale Experiments on Hydrogen Combustion for Severe Accident Code Validation-HYCOM
,”
Nucl. Eng. Des.
,
235
(2–4), pp.
253
270
.
22.
Movahed-Shariat-Panahi
,
M.
,
2012
, “
Recommendation for Maximum Allowable Mesh Size for Plant Combustion Analyses With CFD Codes
,”
Nucl. Eng. Des.
,
253
, pp.
360
366
.
23.
Dorofeev
,
S. B.
,
Sidorov
,
V. P.
,
Dvoinishnikov
,
A. E.
, and
Breitung
,
W.
,
1996
, “
Deflagration to Detonation Transition in Large Confined Volume of Lean Hydrogen-Air Mixtures
,”
Combust. Flame
,
104
(
1
), pp.
95
110
.
24.
Breitung
,
W.
,
Chan
,
C.
,
Dorofeev
,
S.
,
Eder
,
A.
,
Gerland
,
B.
,
Heitsch
,
M.
,
Klein
,
R.
,
Malliakos
,
A.
,
Shepherd
,
J.
,
Studer
,
E.
, and
Thibault
,
P.
,
2000
, “
Flame Acceleration and Deflagration-to-Detonation Transition in Nuclear Safety
,” Organisation for Economic Co-operation and Development, Paris, France, Technical Report No.
NEA/CSNI/R(2000)7
.https://www.nrc.gov/docs/ML0313/ML031340619.pdf
25.
Vollmer
,
K.
,
Ettner
,
F.
, and
Sattelmayer
,
T.
,
2012
, “
Deflagration-to-Detonation Transition in Hydrogen-Air Mixtures With a Concentration Gradient
,”
Combust. Sci. Technol.
,
184
(10–11), pp.
1903
1915
.
26.
Boeck
,
L. R.
,
Hasslberger
,
J.
, and
Sattelmayer
,
T.
,
2014
, “
Flame Acceleration in Hydrogen/Air Mixtures With Concentration Gradients
,”
Combust. Sci. Technol.
,
186
(10–11), pp.
1650
1661
.
27.
Grune
,
J.
,
Sempert
,
K.
,
Kuznetsov
,
M. S.
, and
Jordan
,
T.
,
2013
, “
Experimental Investigation of Fast Flame Propagation in Stratified Hydrogen–Air Mixtures in Semi-Confined Flat Layers
,”
J. Loss Prev. Process Ind.
,
26
(
6
), pp.
1442
1451
.
28.
Dorofeev
,
S. B.
,
Kuznetsov
,
M. S.
,
Alekseev
,
V. I.
,
Efimenko
,
A. A.
, and
Breitung
,
W.
,
2001
, “
Evaluation of Limits for Effective Flame Acceleration in Hydrogen Mixtures
,”
J. Loss Prev. Process Ind.
,
14
(
6
), pp.
583
589
.
29.
Liang
,
Z.
,
Sonnenkalb
,
M.
,
Bentaib
,
A.
, and
Sangiorgi
,
M.
,
2014
, “
Status Report on Hydrogen Management and Related Computer Codes
,” Organisation for Economic Co-operation and Development, Paris, France, Report No.
NEA/CSNI/R(2014)8
.https://www.oecd-nea.org/nsd/docs/2014/csni-r2014-8.pdf
You do not currently have access to this content.