For the purpose of nuclear safety analysis, a reactive flow solver has been developed to determine the hazardous potential of large-scale hydrogen explosions. Without using empirical transition criteria, the whole combustion process including deflagration-to-detonation transition (DDT) is computed within a single solver framework. In this paper, we present massively parallelized three-dimensional explosion simulations in a full-scale pressurized water reactor (PWR) of the Konvoi type. Several generic DDT scenarios in globally lean hydrogen–air mixtures are examined to assess the importance of different input parameters. It is demonstrated that the explosion process is highly sensitive to mixture composition, ignition location, and thermodynamic initial conditions. Pressure loads on the confining structure show a profoundly dynamic behavior depending on the position in the containment. Computational cost can effectively be reduced through adaptive mesh refinement (AMR).
Skip Nav Destination
Article navigation
October 2017
Research-Article
Computational Fluid Dynamics Simulation of Deflagration-to-Detonation Transition in a Full-Scale Konvoi-Type Pressurized Water Reactor
Josef Hasslberger,
Josef Hasslberger
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: hasslberger@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: hasslberger@td.mw.tum.de
Search for other works by this author on:
Peter Katzy,
Peter Katzy
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Lorenz R. Boeck,
Lorenz R. Boeck
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Thomas Sattelmayer
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Josef Hasslberger
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: hasslberger@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: hasslberger@td.mw.tum.de
Peter Katzy
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Lorenz R. Boeck
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
1Corresponding author.
Manuscript received September 13, 2016; final manuscript received June 14, 2017; published online July 31, 2017. Assoc. Editor: Asif Arastu.
ASME J of Nuclear Rad Sci. Oct 2017, 3(4): 041014 (10 pages)
Published Online: July 31, 2017
Article history
Received:
September 13, 2016
Revised:
June 14, 2017
Citation
Hasslberger, J., Katzy, P., Boeck, L. R., and Sattelmayer, T. (July 31, 2017). "Computational Fluid Dynamics Simulation of Deflagration-to-Detonation Transition in a Full-Scale Konvoi-Type Pressurized Water Reactor." ASME. ASME J of Nuclear Rad Sci. October 2017; 3(4): 041014. https://doi.org/10.1115/1.4037094
Download citation file:
113
Views
Get Email Alerts
Cited By
Operation Optimization Framework for Advanced Reactors Using a Data-Driven Digital Twin
ASME J of Nuclear Rad Sci (April 2025)
Numerical Analysis of Gas Generation and Migration in a Radioactive Waste Disposal Cell of a Deep Geological Repository
ASME J of Nuclear Rad Sci (April 2025)
Related Articles
Hydrogen–Air–Steam Deflagration Experiment Simulated Using Different Turbulent Flame-Speed Closure Models
ASME J of Nuclear Rad Sci (July,2018)
Emission Characteristics of a Premixed Cyclic-Periodical-Mixing Combustor Operated With Hydrogen-Natural Gas Fuel Mixtures
J. Eng. Gas Turbines Power (February,2010)
Errata: “Schlieren Observation of Spark-Ignited Premixed Charge Combustion Phenomena Using a Transparent Collimating Cylinder Engine” [ASME J. Eng. Gas Turbines Power, 2003, 125 , pp. 336–343]
J. Eng. Gas Turbines Power (April,2003)
Fog Inerting Effects on Hydrogen Combustion in a PWR Ice Condenser Containment
J. Heat Transfer (May,1995)
Related Proceedings Papers
Related Chapters
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Modeling of SAMG Operator Actions in Level 2 PSA (PSAM-0164)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
External Events PSA for Ringhals 2 PWR (PSAM-0159)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)