The presented work aims to improve computational fluid dynamics (CFD) explosion modeling for lean hydrogen–air mixtures on under-resolved grids. Validation data are obtained from an entirely closed laboratory-scale explosion channel (GraVent facility). Investigated hydrogen–air concentrations range from 6 to 19 vol %. Initial conditions are p = 0.1 MPa and T = 293 K. Two highly time-resolved optical measurement techniques are applied simultaneously: (1) 10 kHz shadowgraphy captures line-of-sight integrated macroscopic flame propagation and (2) 20 kHz planar laser-induced fluorescence of the OH radical (OH-PLIF) resolves microscopic flame topology without line-of-sight integration. This paper presents the experiment, measurement techniques, data evaluation methods, and simulation results. The evaluation methods encompass the determination of flame tip velocity over distance and a detailed time-resolved quantification of the flame topology based on OH-PLIF images. One parameter is the length of wrinkled flame fronts in the OH-PLIF plane obtained through automated postprocessing. It reveals the expected enlargement of flame surface area by instabilities on a microscopic level. A strong effect of mixture composition is observed. Simulations based on the new model formulation, incorporating the microscopic enlargement of the flame front, show a promising behavior, where the impact of the augmented flame front on the observed flame front velocities can be detected.

References

1.
Landau
,
L.
,
1944
, “
On the Theory of Slow Combustion
,”
Acta Physicochim. URSS
,
19
, pp.
77
85
.
2.
Lewis
,
B.
, and
von Elbe
,
G.
,
1987
,
Combustion, Flames and Explosion of Gases
,
Academic Press
,
New York
.
3.
Zimont
,
V.
, and
Lipatnikov
,
A.
,
1995
, “
A Numerical Model of Premixed Turbulent Combustion of Gases
,”
Chem. Phys. Rep.
,
14
(
7
), pp.
993
1025
.http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=268279
4.
Dinkelacker
,
F.
, and
Hölzler
,
S.
,
2000
, “
Investigation of a Turbulent Flame Speed Closure Approach for Premixed Flame Calculations
,”
Combust. Sci. Technol.
,
158
(
1
), pp.
321
340
.
5.
Zimont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
526
532
.
6.
Dinkelacker
,
F.
,
Manickam
,
B.
, and
Muppala
,
S.
,
2011
, “
Modelling and Simulation of Lean Premixed Turbulent Methane/Hydrogen/Air Flames With an Effective Lewis Number Approach
,”
Combust. Flame
,
158
(
9
), pp.
1742
1749
.
7.
Damköhler
,
G.
,
1940
, “
Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen
,”
Z. Elektrochem. Angew. Phys. Chem.
,
46
, pp.
601
652
.
8.
Vollmer
,
K.
,
2015
, “
Einfluss von Mischungsgradienten auf die Flammenbeschleunigung und die Detonation in Kanälen
,” Ph.D. thesis, Technische Universität München, Garching, Germany.
9.
Boeck
,
L.
,
Mevel
,
R.
,
Fiala
,
T.
,
Hasslberger
,
J.
, and
Sattelmayer
,
T.
,
2016
, “
High-Speed OH-PLIF Imaging of Deflagration-to-Detonation Transition in H2–Air Mixtures
,”
Exp. Fluids
,
57
(
6
), p.
105
.
10.
Sirah Lasertechnik
,
2015
, “
Datasheet Credo Dye
,” Sirah Lasertechnik GmbH, Grevenbroich, Germany, accessed June 13, 2017, http://www.sirah.com/laser/pulsed-lasers/credo-dye
11.
Kohse-Höinghaus
,
K.
, and
Jeffries
,
J.
,
2002
,
Applied Combustion Diagnostics
,
Taylor & Francis
,
New York
.
12.
Lee
,
T.
, and
Lee
,
S.
,
2003
, “
Direct Comparison of Turbulent Burning Velocity and Flame Surface Properties in Turbulent Premixed Flames
,”
Combust. Flame
,
132
(
3
), pp.
492
502
.
13.
Bechtold
,
J. K.
, and
Matalon
,
M.
,
2016
, “
The Dependence of the Markstein Length on Stoichiometry
,”
Combust. Flame
,
127
(
1–2
), pp.
1906
1913
.
14.
Hoferichter
,
V.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
Analytic Prediction of Unconfined Boundary Layer Flashback Limits in Premixed Hydrogen–Air Flames
,”
Combust. Theory Modell.
, epub.
15.
Mitani
,
T.
, and
Williams
,
F.
,
1980
, “
Studies of Cellular Flames in Hydrogen–Oxygen–Nitrogen Mixtures
,”
Combust. Flame
,
39
(
2
), pp.
169
190
.
16.
Sun
,
C.
,
Sung
,
C.
,
He
,
L.
, and
Law
,
C.
,
1999
, “
Dynamics of Weakly Stretched Flames: Quantitative Description and Extraction of Global Flame Parameters
,”
Combust. Flame
,
118
(
1–2
), pp.
108
128
.
17.
Dowdy
,
D.
,
Smith
,
D. B.
,
Taylor
,
S.
, and
Williams
,
A.
,
1991
, “
The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures
,”
Proc. Combust. Inst.
,
23
(
1
), pp.
325
332
.
18.
Kwon
,
O.
, and
Faeth
,
G.
,
2001
, “
Flame/Stretch Interactions of Premixed Hydrogen-Fueled Flames: Measurements and Predictions
,”
Combust. Flame
,
124
(
4
), pp.
590
610
.
19.
Tse
,
S.
,
Zhu
,
D.
, and
Law
,
C.
,
2000
, “
Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures up to 60 Atmospheres
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1793
1800
.
20.
Vagelopoulos
,
C.
,
Egolfopoulos
,
F.
, and
Law
,
C.
,
1994
, “
Further Considerations on the Determination of Laminar Flame Speeds With the Counterflow Twin-Flame Technique
,”
Proc. Combust. Inst.
,
25
(
1
), pp.
1341
1347
.
21.
Wu
,
C.
, and
Law
,
C.
,
1985
, “
On the Determination of Laminar Flame Speeds From Stretched Flames
,”
Proc. Combust. Inst.
,
20
(
1
), pp.
1941
1949
.
22.
Boeck
,
L. R.
,
2015
, “
Deflagration-to-Detonation Transition and Detonation Propagation in H2–Air Mixtures With Transverse Concentration Gradients
,” Ph.D. thesis, Technische Universität München, Garching, Germany.
23.
Gelfand
,
B. E.
, Silnikov, M. V., Medvedev, S. P., and Khomik, S. V.,
2012
,
Thermo-Gas Dynamics of Hydrogen Combustion and Explosion
,
Springer
,
Berlin
.
24.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2016
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.2.1
,” Cantera Developers, Warrenville, IL.
25.
Konnov
,
A.
,
2008
, “
Remaining Uncertainties in the Kinetic Mechanism of Hydrogen Combustion
,”
Combust. Flame
,
152
(
4
), pp.
507
528
.
26.
Olm
,
C.
,
Zselya
,
I. G.
,
Palvölgyia
,
R.
,
Vargaa
,
T.
,
Nagya
,
T.
,
Curranc
,
H. J.
, and
Turanyia
,
T.
,
2014
, “
Comparison of the Performance of Several Recent Hydrogen Combustion Mechanisms
,”
Combust. Flame
,
161
(
9
), pp.
2219
2234
.
27.
ANSYS
,
2014
, “
ANSYS CFX, Version 15.0.7
,” ANSYS Inc., Canonsburg, PA.
You do not currently have access to this content.