The presented work aims to improve computational fluid dynamics (CFD) explosion modeling for lean hydrogen–air mixtures on under-resolved grids. Validation data are obtained from an entirely closed laboratory-scale explosion channel (GraVent facility). Investigated hydrogen–air concentrations range from 6 to 19 vol %. Initial conditions are p = 0.1 MPa and T = 293 K. Two highly time-resolved optical measurement techniques are applied simultaneously: (1) 10 kHz shadowgraphy captures line-of-sight integrated macroscopic flame propagation and (2) 20 kHz planar laser-induced fluorescence of the OH radical (OH-PLIF) resolves microscopic flame topology without line-of-sight integration. This paper presents the experiment, measurement techniques, data evaluation methods, and simulation results. The evaluation methods encompass the determination of flame tip velocity over distance and a detailed time-resolved quantification of the flame topology based on OH-PLIF images. One parameter is the length of wrinkled flame fronts in the OH-PLIF plane obtained through automated postprocessing. It reveals the expected enlargement of flame surface area by instabilities on a microscopic level. A strong effect of mixture composition is observed. Simulations based on the new model formulation, incorporating the microscopic enlargement of the flame front, show a promising behavior, where the impact of the augmented flame front on the observed flame front velocities can be detected.
Skip Nav Destination
Article navigation
October 2017
Research-Article
The Effect of Intrinsic Instabilities on Effective Flame Speeds in Under-Resolved Simulations of Lean Hydrogen–Air Flames
Peter Katzy,
Peter Katzy
Lehrstuhl für Thermodynamik,
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
e-mail: katzy@td.mw.tum.de
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
e-mail: katzy@td.mw.tum.de
Search for other works by this author on:
Josef Hasslberger,
Josef Hasslberger
Lehrstuhl für Thermodynamik,
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Lorenz R. Boeck,
Lorenz R. Boeck
Lehrstuhl für Thermodynamik,
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Thomas Sattelmayer
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Peter Katzy
Lehrstuhl für Thermodynamik,
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
e-mail: katzy@td.mw.tum.de
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
e-mail: katzy@td.mw.tum.de
Josef Hasslberger
Lehrstuhl für Thermodynamik,
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Lorenz R. Boeck
Lehrstuhl für Thermodynamik,
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85748, Germany
1Corresponding author.
Manuscript received September 26, 2016; final manuscript received May 18, 2017; published online July 31, 2017. Assoc. Editor: Guoqiang Wang.
ASME J of Nuclear Rad Sci. Oct 2017, 3(4): 041015 (11 pages)
Published Online: July 31, 2017
Article history
Received:
September 26, 2016
Revised:
May 18, 2017
Citation
Katzy, P., Hasslberger, J., Boeck, L. R., and Sattelmayer, T. (July 31, 2017). "The Effect of Intrinsic Instabilities on Effective Flame Speeds in Under-Resolved Simulations of Lean Hydrogen–Air Flames." ASME. ASME J of Nuclear Rad Sci. October 2017; 3(4): 041015. https://doi.org/10.1115/1.4036984
Download citation file:
Get Email Alerts
Cited By
Radiation Monitoring for Volatilized Zinc Contamination Using Gamma-Ray Imaging and Spectroscopy
ASME J of Nuclear Rad Sci
Related Articles
Computational Fluid Dynamics Simulation of Deflagration-to-Detonation Transition in a Full-Scale Konvoi-Type Pressurized Water Reactor
ASME J of Nuclear Rad Sci (October,2017)
Hydrogen–Air–Steam Deflagration Experiment Simulated Using Different Turbulent Flame-Speed Closure Models
ASME J of Nuclear Rad Sci (July,2018)
Dynamics of Premixed H2/CH4 Flames Under Near Blowoff Conditions
J. Eng. Gas Turbines Power (November,2010)
An Experimental Study of Lean Blowout With Hydrogen-Enriched Fuels
J. Eng. Gas Turbines Power (April,2012)
Related Proceedings Papers
Related Chapters
Evaluation of the Hydride Reorientation Behavior for Zircaloy-2 Liner Cladding with High Hydrogen Content during Interim Dry Storage Conditions
Zirconium in the Nuclear Industry: 20th International Symposium
Mechanical Behavior of Zircaloy-4 in the Presence of Hydrogen in Solid Solution at Elevated Temperatures
Zirconium in the Nuclear Industry: 20th International Symposium
Effect of Hydrogen on Corrosion of Zircaloy-4 under Irradiation
Zirconium in the Nuclear Industry: 20th International Symposium