Accident tolerant fuels (ATF) and steam generator (SG) auxiliary feedwater (AFW) extended operation are two important methods to increase the coping time for nuclear power plant safety response. In light of recent efforts to investigate such methods, we investigate both FeCrAl cladding oxidation kinetics and SG AFW sensitivity analyses, for the Surry nuclear power plant Short-Term Station Blackout simulation using the MELCOR YR 1.8.6 systems code. The first part describes the effects of FeCrAl cladding oxidation kinetics. Zircaloy cladding and two different oxidation models of FeCrAl cladding are compared. The initial hydrogen generation time (>0.5 kg) is used as the evaluation criterion for fuel degradation in a severe accident. Results showed that the more recent oxidation correlation by ORNL predicts much less hydrogen generation than Zircaloy cladding. The second part investigates the effects of three different methods of AFW injection into the SG secondary side. We considered three different methods of water injection; i.e., constant water injection into the secondary side (case 1); water injection based on secondary side water level in boiler region (case 2); water injection based on secondary side water level in the downcomer region (case 3). The case of constant water injection is the most straightforward, but it would have the tendency to overfill the SG with excess water. Water injection with downcomer level control is more reasonable but requires DC power to monitor level and to control AFW injection rate.

References

1.
Wang
,
M.
,
Zhao
,
H.
,
Zhang
,
Y.
,
Su
,
G. H.
,
Tian
,
W. X.
, and
Qiu
,
S. Z.
,
2012
, “
Research on the Designed Emergency Passive Residual Heat Removal System During the Station Blackout Scenario for CPR1000
,”
Ann. Nucl. Energy
,
45
, pp.
86
93
.
2.
Wang
,
J.
,
Zhang
,
Y.
,
Mao
,
K.
,
Huang
,
Y. J.
,
Tian
,
W. X.
,
Su
,
G. H.
, and
Qiu
,
S. Z.
,
2015
, “
MELCOR Simulation of Core Thermal Response During a Station Blackout Initiated Severe Accident in China Pressurized Reactor (CPR1000)
,”
Prog. Nucl. Energy
,
81
, pp.
6
15
.
3.
Hu
,
L.
,
Zhang
,
Y.
,
Li
,
L.
,
Su
,
G. H.
,
Tian
,
W. X.
, and
Qiu
,
S. Q.
,
2015
, “
Investigation of Severe Accident Scenario of PWR Response to LOCA along With SBO
,”
Prog. Nucl. Energy
,
83
, pp.
159
166
.
4.
Tuomisto
,
H.
, and
Theofanous
,
T. G.
,
1994
, “
A Consistent Approach to Severe Accident Management
,”
Nucl. Eng. Des.
,
148
(
2–3
), pp.
171
183
.
5.
Wang
,
J.
,
McCabe
,
M.
,
Wu
,
L.
,
Dong
,
X. M.
,
Wang
,
X. M.
,
Haskin
,
T. C.
, and
Corradini
,
M. L.
,
2017
, “
Accident Tolerant Clad Material Modeling by MELCOR: Benchmark for SURRY Short Term Station Blackout
,”
Nucl. Eng. Des.
,
313
, pp.
458
469
.
6.
Wang
,
J.
,
Jo
,
H. J.
, and
Corradini
,
M. L.
,
2018
, “
Potential Recovery Actions from a Severe Accident in a PWR: MELCOR Analysis of a Station Blackout Scenario, Nuclear Technology
,”
Nuclear Technol.
(epub).
7.
Wang
,
J.
,
Mccabe
,
M.
,
Haskin
,
T. C.
,
Wu
,
Y. W.
,
Su
,
G. H.
, and
Corradini
,
M. L.
,
2017
, “
Accident Tolerance Cladding Thermal Hydraulic Simulation and Oxidation Kinetic Sensitivity Analysis
,”
ASME
Paper No. ICONE25-66523.
8.
Carmack
,
J.
,
Goldner
,
F.
,
Bragg-Sitton
,
S. M.
, and
Snead
,
L. L.
,
2013
, “
Overview of the U.S. DOE Accident Tolerant Fuel Development Program
,” Top Fuel Conference Charlotte, NC, Sep. 15–19, Paper No.
INL/CON-13- 29288
.https://www.osti.gov/biblio/1130553
9.
Zinkle
,
S. J.
,
Terrani
,
K. A.
,
Gehin
,
J. C.
,
Ott
,
L. J.
, and
Snead
,
L. L.
,
2014
, “
Accident Tolerant Fuels for LWRs: A Perspective
,”
J. Nucl. Mater.
,
448
(
1–3
), pp.
374
379
.
10.
Bragg-Sitton
,
S.
,
2014
, “
Development of Advanced Accident-Tolerant Fuels for Commercial LWRs
,”
Nucl. News
,
57
, pp.
83
91
.http://www.ans.org/pubs/magazines/download/a_921
11.
Ott
,
L. J.
,
Robb
,
K. R.
, and
Wang
,
D.
,
2014
, “
Preliminary Assessment of Accident-Tolerant Fuels on LWR Performance During Normal Operation and Under DB and BDB Accident Conditions
,”
J. Nucl. Mater.
,
448
(
1–3
), pp.
520
533
.
12.
Wu
,
X.
,
Kozlowski
,
T.
, and
Hales
,
J. D.
,
2015
, “
Neutronics and Fuel Performance Evaluation of Accident Tolerant FeCrAl Cladding Under Normal Operation Conditions
,”
Ann. Nucl. Energy
,
85
, pp.
763
775
.
13.
Pint
,
B.
,
Tortorelli
,
P.
, and
Wright
,
I.
,
2002
, “
Effect of Cycle Frequency on High-Temperature Oxidation Behavior of Alumina-Forming Alloys
,”
Oxid. Met.
,
58
(
1/2
), pp.
73
101
.
14.
Pint
,
B.
,
Unocic
,
K.
, and
Terrani
,
K.
,
2015
, “
Steam Oxidation of FeCrAl and SiC in the SATS
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/LTR-2015/417
.https://www.osti.gov/biblio/1221738
15.
Tatlock
,
G. J.
,
Dyadko
,
E. G.
, and
Dryepondt
,
S. N.
,
2007
, “
Pulsed Plasma-Assisted Diffusion Bonding of Oxide Dispersion-Strengthened–FeCrAl Alloys
,”
Metall. Mater. Trans. A
,
38
(
7
), pp.
1663
1665
.
16.
Unocic
,
K. A.
,
Essuman
,
E.
, and
Dryepondt
,
S.
,
2012
, “
Effect of Environment on the Scale Formed on Oxide Dispersion Strengthened FeCrAl at 1050 °C and 1100 °C
,”
Mater. High Temperatures
,
29
(
3
), pp.
171
180
.
17.
NRC
,
1991
, “
Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants
,” U.S. Nuclear Regulatory Commission, Washington DC, Report No.
NUREG–1150
.https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1150/
18.
Breeding
,
R. J.
,
Helton
,
J. C.
,
Murfin
,
W. B.
,
Smith
,
L. N.
,
Johnson
,
J. D.
,
Jow
,
H. N.
, and
Shiver
,
A. W.
,
1992
, “
The NUREG-1150 Probabilistic Risk Assessment for the Surry Nuclear Power Station
,”
Nucl. Eng. Des.
,
135
(
1
), pp.
29
59
.
19.
Merrill
,
B. J.
,
Bragg-Sitton
,
S. M.
, and
Humrickhouse
,
P.
,
2013
, “
Status Report on Advanced Cladding Modeling Work to Assess Cladding Performance Under Accident Conditions
,” Idaho National Laboratory, Idaho Falls, ID, Report No.
INL/EXT-13-30206
.https://inldigitallibrary.inl.gov/sites/sti/sti/5935847.pdf
20.
Robb
,
K. R.
,
2015
, “
Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits During BWR Station Blackout Accidents
,”
16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH16)
, Chicago, IL, Aug. 30–Sep. 4, Paper No.
1213328
.https://www.osti.gov/biblio/1213328-analysis-fecral-accident-tolerant-fuel-concept-benefits-during-bwr-station-blackout-accidents
21.
Sandia National Laboratories
,
2010
, “
State-of-the-Art Reactor Consequence Analyses (SOARCA) Project: Appendix B Surry Integrated Analysis
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2008P
.https://www.nrc.gov/docs/ML1609/ML16096A374.pdf
22.
Wang
,
J.
,
Corradini
,
M. L.
,
Haskin
,
T.
,
Zhang
,
Y. P.
,
Lu
,
Q.
,
Tian
,
W. X.
,
Su
,
G. H.
, and
Qiu
,
S. Z.
,
2015
, “
Comparison of Hydrogen Generation Rate Between CORA-13 Test and MELCOR Simulation: Clad Solid-Phase Oxidation Models Using Self-Developed Code MYCOAC
,”
Nucl. Technol.
,
192
(
1
), pp.
25
34
.
23.
Wang
,
J.
,
Haskin
,
T. C.
, and
Corradini
,
M. L.
,
2017
, “
Severe Accident Progression and the Effects of Accident Tolerant Cladding
,”
17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, Xi'an, China, Sept. 3–8, Paper No. 20083.
24.
Park
,
R. J.
,
Kim
,
S. B.
,
Hong
,
S. W.
, and
Kim
,
H. D.
,
2009
, “
Detailed Evaluation of Coolant Injection Into the Reactor Vessel With RCS Depressurization for High Pressure Sequences
,”
Nucl. Eng. Des.
,
239
(
11
), pp.
2484
2490
.
25.
Park
,
S. Y.
, and
Ahn
,
K. I.
,
2015
, “
Evaluation of an Accident Management Strategy of Emergency Water Injection Using Fire Engines in a Typical Pressurized Water Reactor
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
719
728
.
26.
Wang
,
S. J.
,
Chiang
,
K. S.
, and
Chiang
,
S. C.
,
2004
, “
Analysis of PWR RCS Injection Strategy During Severe Accident
,”
Nucl. Technol.
,
146
(
2
), pp.
199
205
.
27.
Xu
,
J.
,
Zhang
,
D.
, and
Zhang
,
L.
,
2010
, “
Analysis of Mitigation Capability of High-Pressure Safety Injection System to SBO Accident for PWR
,”
Nucl. Power Eng.
,
31
(
1
), pp.
74
78
.https://inis.iaea.org/search/search.aspx?orig_q=RN:44060816
28.
Gauntt
,
R.
,
Cole
,
R.
,
Erickson
,
C. M.
,
Gido
,
R. I. G.
,
Gasser
,
R. D.
,
Rodrigues
,
S. B.
, and
Young
,
M. F.
,
2000
, “
MELCOR Computer Code Manuals
,” Sandia National Laboratories, Albuquerque, NM, Report No. NUREG/CR 6119.
You do not currently have access to this content.