The continuous generation of graphite dust particles in the core of a high-temperature reactor (HTR) is one of the key challenges of safety during its operation. The graphite dust particles emerge from relative movements between the fuel elements or from contact to the graphitic reflector structure and could be contaminated by diffused fission products from the fuel elements. They are distributed from the reactor core to the entire reactor coolant system. In case of a depressurization accident, a release of the contaminated dust into the confinement is possible. In addition, the contaminated graphite dust can decrease the life cycle of the coolant system due to chemical interactions. On one hand, the knowledge of the behavior of graphite dust particles under HTR conditions using helium as the flow medium is a key factor to develop an effective filter system for the discussed issue. On the other hand, it also provides a possibility to access the activity distribution in the reactor. The behavior can be subdivided into short-term effects like transport, deposition, remobilization and long-term effects like reactions with material surfaces. The Technische Universität Dresden has installed a new high-temperature test facility to study the short-term effects of deposition of graphite dust particles. The flow channel has a length of 5 m and a tube diameter of 0.05 m. With helium as the flow medium, the temperature can be up to 950 °C in the channel center and 120 °C on the sample surface, the Reynolds number can be varied from 150 up to 1000. The particles get dispersed into the accelerated and heated flow medium in the flow channel. Next, the aerosol is passing a 3 m long adiabatic section to ensure homogenous flow conditions. After passing the flow straightener, it enters the optically accessible measurement path made from quartz glass. In particular, this test facility offers the possibility to analyze the influence of the thermophoretic effect separately. For this, an optionally cooled sample can be placed in the measuring area. The thickness of the particle layer on the sample is estimated with a three-dimensional laser scanning microscope. The particle concentration above the sample is measured with an aerosol particle sizer (APS). Particle image velocimetry (PIV) detects the flow-velocity field and provides data to estimate the shear velocity. In combination with the measured temperature-field, all necessary information for the calculation of the particle deposition and particle relaxation times are available. The measurements are compared to results of theoretical works from the literature. The experimental database is relevant especially for computational fluid dynamics (CFD)-developers, for model development, and model verification. A wide range of phenomena like particle separation, local agglomeration of particles with a specific particle mass, and selective remobilization can be explained in this way. Thus, this work contributes to a realistic analysis of nuclear safety.

References

1.
Lustfeld
,
M.
,
2015
, “
Assessment of Nanocrystalline Ceramic Multilayer Coatings for the Application in High-Temperature Energy Systems
,” Monographic dissertation, Technische Universität Dresden, Dresden, Germany.
2.
Nieder
,
R.
,
1990
, “
Schlussfolgerungen Für Die HTR-Chemie Aus 21 Jahren Betrieb Des AVR-Reaktors
,”
Chemie Im Kraftwerk
, pp. 133–137.
3.
Kissane
,
M. P.
,
2009
, “
A Review of Radionuclide Behaviour in the Primary System of a Very-High-Temperature Reactor
,”
Nucl. Eng. Des.
,
239
(
12
), pp.
3076
3091
.
4.
Humrickhouse
,
P. W.
,
2011
, “
HTGR Dust Safety Issues and Needs for Research and Development
,” Idaho National Laboratory, Idaho Falls, ID, Report No.
INL/EXT--11-21097
.https://inis.iaea.org/search/search.aspx?orig_q=RN:42097952
5.
Rostamian
,
M.
,
Potirniche
,
G. P.
,
Cogliati
,
J. J.
,
Ougouag
,
A.
, and
Tokuhiro
,
A.
,
2012
, “
Computational Prediction of Dust Production in Pebble Bed Reactors
,”
Nucl. Eng. Des.
,
243
, pp.
33
40
.
6.
Rostamian
,
M.
,
Johnson
,
G.
,
Hiruta
,
M.
,
Potirniche
,
G. P.
,
Ougouag
,
A.
,
Cogliati
,
J. J.
, and
Tokuhiro
,
A.
,
2013
, “
Computational and Experimental Prediction of Dust Production in Pebble Bed Reactors—Part I
,”
Nucl. Eng. Des.
,
263
, pp.
500
508
.
7.
Hiruta
,
M.
,
Johnson
,
G.
,
Rostamian
,
M.
,
Potirniche
,
G.
,
Ougouag
,
A.
,
Bertino
,
M.
,
Franzel
,
L.
, and
Tokuhiro
,
A.
,
2013
, “
Computational and Experimental Prediction of Dust Production in Pebble Bed Reactors—Part II
,”
Nucl. Eng. Des.
,
263
, pp.
509
514
.
8.
Stempniewicz
,
M.
,
Winters
,
L.
, and
Caspersson
,
S.
,
2012
, “
Analysis of Dust and Fission Products in a Pebble Bed NGNP
,”
Nucl. Eng. Des.
,
251
, pp.
433
442
.
9.
Chen
,
T.
,
Wang
,
J.
,
Peng
,
W.
, and
Sun
,
X.
,
2017
, “
Numerical Simulation of Graphite Dust Deposition in Pebble Bed Reactor Core of HTGR
,”
ASME
Paper No. ICONE25-67052.
10.
Peng
,
W.
,
Zhen
,
Y.
,
Yang
,
X.
, and
Yu
,
S.
,
2013
, “
Graphite Dust Deposition in the HTR-10 Steam Generator
,”
Particuology
,
11
(
5
), pp.
533
539
.
11.
Peng
,
W.
,
Zhang
,
T.
,
Sun
,
X.
, and
Yu
,
S.
,
2016
, “
Thermophoretic and Turbulent Deposition of Graphite Dust in HTGR Steam Generators
,”
Nucl. Eng. Des.
,
300
, pp.
610
619
.
12.
Lecrivain
,
G.
,
Sevan
,
D. M. B. T.
, and
Hampel
,
U.
,
2014
, “
Numerical Simulation of Multilayer Deposition in an Obstructed Channel Flow
,”
Adv. Powder Technol.
,
25
(
1
), pp.
310
320
.
13.
Lecrivain
,
G.
,
Rayan
,
R.
,
Hurtado
,
A. M.
, and
Hampel
,
U.
,
2016
, “
Using Quasi-Dns to Investigate the Deposition of Elongated Aerosol Particles in a Wavy Channel Flow
,”
Comput. Fluids
,
124
, pp.
78
85
.
14.
Wood
,
N. B.
,
1981
, “
A Simple Method for the Calculation of Turbulent Deposition to Smooth and Rough Surfaces
,”
J. Aerosol. Sci.
,
12
(
3
), pp.
275
290
.
15.
Li
,
A.
,
Ahmadi
,
G.
,
Bayer
,
R. G.
, and
Gaynes
,
M. A.
,
1994
, “
Aerosol Particle Deposition in an Obstructed Turbulent Duct Flow
,”
J. Aerosol. Sci.
,
25
(
1
), pp.
91
112
.
16.
He
,
C.
, and
Ahmadi
,
G.
,
1998
, “
Particle Deposition With Thermophoresis in Laminar and Turbulent Duct Flows
,”
Aerosol. Sci. Technol.
,
29
(
6
), pp.
525
546
.
17.
Papavergos
,
P. G.
, and
Hedley
,
A. B.
,
1984
, “
Particle Deposition Behaviour From Turbulent Flows
,”
Trans. Inst. Chem. Eng.
,
62
, pp.
275
295
.
18.
Boddu
,
S. R.
,
Gutti
,
V. R.
,
Meyer
,
R. M.
,
Ghosh
,
T. K.
,
Tompson
,
R. V.
, and
Loyalka
,
S. K.
,
2011
, “
Carbon Nanoparticle Generation, Collection, and Characterization Using a Spark Generator and a Thermophoretic Deposition Cell
,”
Nucl. Technol.
,
173
(
3
), pp.
318
326
.
19.
Hurtado
,
A. M.
,
1996
, “
Untersuchungen Zu Innovativen Konzepten in Der Kernenergietechnik: Beiträge Zur Zukünftigen Energieversorgung
,” Habilitation, RWTH Aachen, Aachen, Germany.
20.
Liu
,
B. Y. H.
, and
Agarwal
,
J. K.
,
1974
, “
Experimental Observation of Aerosol Deposition in Turbulent Flow
,”
J. Aerosol Sci.
,
5
(
2
), pp.
145
155
.
21.
Fan
,
F.-G.
, and
Ahmadi
,
G.
,
1993
, “
A Sublayer Model for Turbulent Deposition of Particles in Vertical Ducts With Smooth and Rough Surfaces
,”
J. Aerosol Sci.
,
24
(
1
), pp.
45
64
.
22.
Li
,
W.
, and
Davis
,
J. E.
,
1995
, “
Measurement of the Thermophoretic Force by Electrodynamic Levitation: Microspheres in Air
,”
J. Aerosol Sci.
,
26
(
7
), pp.
1063
1083
.
23.
Barth
,
T.
,
Lecrivain
,
G.
, and
Hampel
,
U.
,
2013
, “
Particle Deposition Study in a Horizontal Turbulent Duct Flow Using Optical Microscopy and Particle Size Spectrometry
,”
J. Aerosol Sci.
,
60
, pp.
47
54
.
24.
Lustfeld
,
M.
,
Qu
,
T.
,
Lippmann
,
W.
,
Hurtado
,
A.
, and
Göhler
,
D.
,
2014
, “
Experimental Study of Graphite Particle Deposition Upstream of a Forward-Facing Step
,”
Nucl. Eng. Des.
,
271
, pp.
552
559
.
25.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
, 2nd ed.,
Wiley
,
New York
.
26.
von der Decken
,
C.-B.
, and
Wawrzik
,
U.
,
1989
, “
Staub- und Aktivitätsverhalten. In:AVR—20 Jahre Betrieb: Ein deutscher Beitrag zu einer zukunftsweisenden Energietechnik
,”
VDI-Verlag
,
729
, pp. 259–275.
27.
Rott
,
H. P.
, and
Wahsweiler
,
H. G.
,
1990
, “
Abschlussbericht zum Vorhaben Auswertung von Inbetriebnahmeergebnissen am THTR-300 für HTR Nachfolgeanlagen: Teilvorhaben 6.1: Verteilung und Auswirkung von Graphitstaub im Primärkreis
,” HRB GMBH, Mannheim, Germany, Report No. RA 5898.
28.
ThyssenKrupp
,
2002
, “
ThyssenKrupp V.D.M., Nicrofer 3220 H/3220 HP-Alloy 800H/800HP
,” Material Data Sheet No. 4029.
29.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
Nih Image to Imagej: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.
You do not currently have access to this content.