Abstract

The use of supercritical water (SCW) in GEN IV reactors is a logical approach to the ongoing development of nuclear energy. A proper understanding of the radiation chemistry and reactivities of transients in a reactor core under SCW conditions is required to achieve optimal water chemistry control and safety. A Monte Carlo simulation study of the radiolysis of SCW at 400 °C by incident 2 MeV monoenergetic neutrons (taken as representative of a fast neutron flux in a reactor) was carried out as a function of water density between ∼150 and 600 kg/m3. The in situ formation of H3O+ by the generated recoil protons was shown to render the “native” track regions temporarily very acidic (pH ∼ 1). This acidity, though local and transitory (“acid spikes”), raises the question whether it may promote a corrosive environment under proposed SCW-cooled reactor operating conditions that would lead to progressive degradation of reactor components.

References

1.
DOE
,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy Systems
,” U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum (GIF), Washington, DC, Report No. GIF-002-00.
2.
Locatelli
,
G.
,
Mancini
,
M.
, and
Todeschini
,
N.
,
2013
, “
Generation IV Nuclear Reactors: Current Status and Future Prospects
,”
Energy Policy
,
61
, pp.
1503
1520
.10.1016/j.enpol.2013.06.101
3.
Guzonas
,
D.
,
Novotny
,
R.
,
Penttilä
,
S.
,
Toivonen
,
A.
, and
Zheng
,
W.
,
2018
,
Materials and Water Chemistry for Supercritical Water-Cooled Reactors
,
Woodhead Publishing, Elsevier
,
Duxford, UK
.
4.
Oka
,
Y.
, and
Koshizuka
,
S.
,
1998
, “
Conceptual Design Study of Advanced Power Reactors
,”
Prog. Nucl. Energy
,
32
(
1–2
), pp.
163
177
.10.1016/S0149-1970(97)00014-0
5.
Schulenberg
,
T.
,
Leung
,
L. K. H.
, and
Oka
,
Y.
,
2014
, “
Review of R&D for Supercritical Water Cooled Reactors
,”
Prog. Nucl. Energy
,
77
(
C
), pp.
282
299
.10.1016/j.pnucene.2014.02.021
6.
Duffey
,
R.
,
2016
, “
The Development and Future of the Supercritical Water Reactor
,”
CNL Nucl. Rev.
,
5
(
2
), pp.
181
188
.
7.
Gen IV International Forum,
2018
, “
Supercritical-Water-Cooled Reactor (SCWR)
,” Gen IV International Forum, accessed Aug. 9, 2019, https://www.gen-4.org/gif/jcms/c_9360/scwr
8.
Guzonas
,
D.
,
Brosseau
,
F.
,
Tremaine
,
P.
,
Meesungnoen
,
J.
, and
Jay-Gerin
,
J.-P.
,
2012
, “
Water Chemistry in a Supercritical Water-Cooled Pressure Tube Reactor
,”
Nucl. Technol.
,
179
(
2
), pp.
205
219
.10.13182/NT12-A14093
9.
Wang
,
M. Y.
,
Yeh
,
T.-K.
,
Liu
,
H.-M.
, and
Lee
,
M.
,
2013
, “
Predicted Water Chemistry in the Primary Coolant Circuit of a Supercritical Water Reactor
,”
Nucl. Sci. Eng.
,
174
(
2
), pp.
179
187
.10.13182/NSE12-16
10.
Guzonas
,
D.
,
Stuart
,
C. R.
,
Jay-Gerin
,
J.-P.
, and
Meesungnoen
,
J.
,
2010
, “
Testing Requirements for SCWR Radiolysis
,” Atomic Energy of Canada Ltd., Mississauga, ON, Canada, Report No. AECL-153-127160-REPT-001.
11.
Guzonas
,
D.
, and
Cook
,
W. G.
,
2012
, “
Cycle Chemistry and Its Effect on Materials in a Supercritical Water-Cooled Reactor: A Synthesis of Current Understanding
,”
Corros. Sci.
,
65
, pp.
48
66
.10.1016/j.corsci.2012.08.006
12.
Bartels
,
D. M.
,
Anderson
,
M.
,
Wilson
,
P.
,
Allen
,
T.
, and
Sridharan
,
K.
,
2006
, “
Supercritical Water Radiolysis Chemistry. Supercritical Water Corrosion
,” Idaho National Laboratory, Idaho Falls, ID, accessed Aug. 9, 2019, http://nuclear.inl.gov/deliverables/docs/ uwnd_scw_level_ii_sep_2006_v3.pdf
13.
Kanike
,
V.
,
Meesungnoen
,
J.
, and
Jay-Gerin
,
J.-P.
,
2015
, “
Acid Spike Effect in Spurs/Tracks of the Low/High Linear Energy Transfer Radiolysis of Water: Potential Implications for Radiobiology
,”
RSC Adv.
,
5
(
54
), pp.
43361
43370
.10.1039/C5RA07173A
14.
Kanike
,
V.
,
Meesungnoen
,
J.
,
Sanguanmith
,
S.
,
Guzonas
,
D.
,
Stuart
,
C. R.
, and
Jay-Gerin
,
J.-P.
,
2017
, “
Generation of Ultrafast Transient Acid Spikes in High-Temperature Water Irradiated With Low Linear Energy Transfer Radiation
,”
CNL Nucl. Rev.
,
6
(
1
), pp.
31
40
.10.12943/CNR.2016.00013
15.
Islam
,
M. M.
,
Kanike
,
V.
,
Meesungnoen
,
J.
,
Lertnaisat
,
P.
,
Katsumura
,
Y.
, and
Jay-Gerin
,
J.-P.
,
2018
, “
In Situ Generation of Ultrafast Transient “Acid Spikes” in the 10B(n,α)7Li Radiolysis of Water
,”
Chem. Phys. Lett.
,
693
, pp.
210
215
.10.1016/j.cplett.2017.12.037
16.
Kuppermann
,
A.
,
1961
, “
Diffusion Kinetics in Radiation Chemistry
,”
Actions Chimiques et Biologiques des Radiations
, Vol.
5
,
M.
Haïssinsky
, ed.,
Masson
,
Paris, France
, pp.
85
166
.
17.
Elliot
,
A. J.
, and
Bartels
,
D. M.
,
2009
, “
The Reaction Set, Rate Constants and g-Values for the Simulation of the Radiolysis of Light Water Over the Range 20 to 350 °C Based on Information Available in 2008
,” Atomic Energy of Canada Ltd, Chalk River, ON, Canada, Report No. AECL-153-127160-450-001.
18.
Edwards
,
E. J.
,
Wilson
,
P. P. H.
,
Anderson
,
M. H.
,
Mezyk
,
S. P.
,
Pimblott
,
S. M.
, and
Bartels
,
D. M.
,
2007
, “
An Apparatus for the Study of High Temperature Water Radiolysis in a Nuclear Reactor: Calibration of Dose in a Mixed Neutron/Gamma Radiation Field
,”
Rev. Sci. Instrum.
,
78
(
12
), p.
124101
.10.1063/1.2814167
19.
Tippayamontri
,
T.
,
Sanguanmith
,
S.
,
Meesungnoen
,
J.
,
Sunaryo
,
G. R.
, and
Jay-Gerin
,
J.-P.
,
2009
, “
Fast Neutron Radiolysis of the Ferrous Sulfate (Fricke) Dosimeter: Monte Carlo Simulations
,”
Recent Research Developments in Physical Chemistry
,
S. G.
Pandalai
, ed., Vol.
10
,
Transworld Research Network
,
Trivandrum, India
, pp.
143
211
.
20.
Butarbutar
,
S. L.
,
Meesungnoen
,
J.
,
Guzonas
,
D.
,
Stuart
,
C. R.
, and
Jay-Gerin
,
J.-P.
,
2014
, “
Modeling the Radiolysis of Supercritical Water by Fast Neutrons: Density Dependence of the Yields of Primary Species at 400 °C
,”
Radiat. Res.
,
182
(
6
), pp.
695
704
.10.1667/RR13715.1
21.
Watt
,
D. E.
,
1996
,
Quantities for Dosimetry of Ionizing Radiations in Liquid Water
,
Taylor & Francis
,
London
, UK.
22.
Gordon
,
S.
,
Schmidt
,
K. H.
, and
Honekamp
,
J. R.
,
1983
, “
An Analysis of the Hydrogen Bubble Concerns in the Three-Mile Island Unit-2 Reactor Vessel
,”
Radiat. Phys. Chem.
,
21
(
3
), pp.
247
258
.
23.
Swiatla-Wojcik
,
D.
, and
Buxton
,
G. V.
,
1998
, “
Modelling of Linear Energy Transfer Effects on Track Core Processes in the Radiolysis of Water Up to 300 °C
,”
J. Chem. Soc., Faraday Trans.
,
94
(
15
), pp.
2135
2141
.10.1039/a802075b
24.
Sanguanmith
,
S.
,
Meesungnoen
,
J.
,
Guzonas
,
D.
,
Stuart
,
C. R.
, and
Jay-Gerin
,
J.-P.
,
2016
, “
Radiolysis of Supercritical Water at 400 °C: A Sensitivity Study of the Density Dependence of the Yield of Hydrated Electrons on the (eaq +  eaq) Reaction Rate Constant
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
2
(
2
), p.
021014
.10.1115/1.4031013
25.
Meesungnoen
,
J.
, and
Jay-Gerin
,
J.-P.
,
2011
, “
Radiation Chemistry of Liquid Water With Heavy Ions: Monte Carlo Simulation Studies
,”
Charged Particle and Photon Interactions With Matter: Recent Advances, Applications, and Interfaces
,
Hatano
,
Y.
,
Katsumura
,
Y.
, and
Mozumder
,
A.
, eds.,
Taylor & Francis Group
,
Boca Raton, FL
, pp.
355
400
.
26.
Clifford
,
P.
,
Green
,
N. J. B.
, and
Pilling
,
M. J.
,
1982
, “
Monte Carlo Simulation of Diffusion and Reaction in Radiation-Induced Spurs. Comparisons With Analytic Models
,”
J. Phys. Chem.
,
86
(
8
), pp.
1322
1327
.10.1021/j100397a022
27.
Tachiya
,
M.
,
1983
, “
Theory of Diffusion-Controlled Reactions: Formulation of the Bulk Reaction Rate in Terms of the Pair Probability
,”
Radiat. Phys. Chem.
,
21
(
1–2
), pp.
167
175
.10.1016/0146-5724(83)90143-7
28.
Zaider
,
M.
, and
Brenner
,
D. J.
,
1984
, “
On the Stochastic Treatment of Fast Chemical Reactions
,”
Radiat. Res.
,
100
(
2
), pp.
245
256
.10.2307/3576345
29.
Pimblott
,
S. M.
,
Pilling
,
M. J.
, and
Green
,
N. J. B.
,
1991
, “
Stochastic Models of Spur Kinetics in Water
,”
Radiat. Phys. Chem.
,
37
(
3
), pp.
377
388
.10.1016/1359-0197(91)90006-N
30.
Frongillo
,
Y.
,
Goulet
,
T.
,
Fraser
,
M.-J.
,
Cobut
,
V.
,
Patau
,
J. P.
, and
Jay-Gerin
,
J.-P.
,
1998
, “
Monte Carlo Simulation of Fast Electron and Proton Tracks in Liquid Water—II: Nonhomogeneous Chemistry
,”
Radiat. Phys. Chem.
,
51
(
3
), pp.
245
254
.
31.
Hervé du Penhoat
,
M.-A.
,
Goulet
,
T.
,
Frongillo
,
Y.
,
Fraser
,
M.-J.
,
Bernat
,
P.
, and
Jay-Gerin
,
J.-P.
,
2000
, “
Radiolysis of Liquid Water at Temperatures Up to 300 °C: A Monte Carlo Simulation Study
,”
J. Phys. Chem. A
,
104
(
50
), pp.
11757
11770
.10.1021/jp001662d
32.
Plante
,
I.
,
2009
, “
Développement de Codes de Simulation Monte Carlo de la Radiolyse de L'Eau Par Des Électrons, Ions Lourds, Photons et Neutrons. Applications à Divers Sujets D'Intérêt Expérimental
,” Ph.D. thesis, Université de Sherbrooke, Sherbrooke, QC, Canada.
33.
Goulet
,
T.
, and
Jay-Gerin
,
J.-P.
,
1988
, “
Thermalization Distances and Times for Subexcitation Electrons in Solid Water
,”
J. Phys. Chem.
,
92
(
24
), pp.
6871
6874
.10.1021/j100335a007
34.
Goulet
,
T.
,
Jay-Gerin
,
J.-P.
,
Frongillo
,
Y.
,
Cobut
,
V.
, and
Fraser
,
M.-J.
,
1996
, “
Rôle Des Distances de Thermalization Des Électrons Dans la Radiolyse de L'Eau Liquide
,”
J. Chim. Phys.
,
93
(
1
), pp.
111
116
.10.1051/jcp/1996930111
35.
Swiatla-Wojcik
,
D.
, and
Buxton
,
G. V.
,
1995
, “
Modeling of Radiation Spur Processes in Water at Temperatures Up to 300 °C
,”
J. Phys. Chem.
,
99
(
29
), pp.
11464
11471
.10.1021/j100029a026
36.
Muroya
,
Y.
,
Sanguanmith
,
S.
,
Meesungnoen
,
J.
,
Lin
,
M.
,
Yan
,
Y.
,
Katsumura
,
Y.
, and
Jay-Gerin
,
J.-P.
,
2012
, “
Time-Dependent Yield of the Hydrated Electron in Subcritical and Supercritical Water Studied by Ultrafast Pulse Radiolysis and Monte Carlo Simulation
,”
Phys. Chem. Chem. Phys.
,
14
(
41
), pp.
14325
14333
.10.1039/c2cp42260c
37.
Meesungnoen
,
J.
,
Sanguanmith
,
S.
, and
Jay-Gerin
,
J.-P.
,
2013
, “
Density Dependence of the Yield of Hydrated Electrons in the Low-LET Radiolysis of Supercritical Water at 400 °C: Influence of the Geminate Recombination of Subexcitation-Energy Electrons Prior to Thermalization
,”
Phys. Chem. Chem. Phys.
,
15
(
39
), pp.
16450
16455
.10.1039/c3cp52630e
38.
Liu
,
G.
,
Du
,
T.
,
Toth
,
L.
,
Beninger
,
J.
, and
Ghandi
,
K.
,
2016
, “
Prediction of Rate Constants of Important Reactions in Water Radiation Chemistry in Sub- and Supercritical Water: Equilibrium Reactions
,”
CNL Nucl. Rev.
,
5
(
2
), pp.
345
361
.10.12943/CNR.2016.00035
39.
Liu
,
G.
,
Landry
,
C.
, and
Ghandi
,
K.
,
2018
, “
Prediction of Rate Constants of Important Chemical Reactions in Water Radiation Chemistry in Sub and Supercritical Water—Non-Equilibrium Reactions
,”
Can. J. Chem.
,
96
(
2
), pp.
267
279
.10.1139/cjc-2017-0315
40.
Ghandi
,
K.
,
Addison-Jones
,
B.
,
Brodovitch
,
J.-C.
,
McKenzie
,
I.
,
Percival
,
P. W.
, and
Schüth
,
J.
,
2002
, “
Near-Diffusion-Controlled Reactions of Muonium in Sub-and Supercritical Water
,”
Phys. Chem. Chem. Phys.
,
4
(
4
), pp.
586
595
.10.1039/b108656a
41.
Muroya
,
Y.
,
Yamashita
,
S.
,
Lertnaisat
,
P.
,
Sanguanmith
,
S.
,
Meesungnoen
,
J.
,
Jay-Gerin
,
J.-P.
, and
Katsumura
,
Y.
,
2017
, “
Rate Constant for the H + H2O → OH + H2 Reaction at Elevated Temperatures Measured by Pulse Radiolysis
,”
Phys. Chem. Chem. Phys.
,
19
(
45
), pp.
30834
30841
.10.1039/C7CP06010F
42.
Lin
,
M.
, and
Katsumura
,
Y.
,
2011
, “
Radiation Chemistry of High Temperature and Supercritical Water and Alcohols
,”
Charged Particle and Photon Interactions With Matter: Recent Advances, Applications, and Interfaces
,
Hatano
,
Y.
,
Katsumura
,
Y.
, and
Mozumder
,
A.
, eds.,
Taylor & Francis Group
,
Boca Raton, FL
, pp.
401
424
.
43.
Cline
,
J.
,
Takahashi
,
K.
,
Marin
,
T. W.
,
Jonah
,
C. D.
, and
Bartels
,
D. M.
,
2002
, “
Pulse Radiolysis of Supercritical Water. 1. Reactions Between Hydrophobic and Anionic Species
,”
J. Phys. Chem. A
,
106
(
51
), pp.
12260
12269
.10.1021/jp0270250
44.
Meesungnoen
,
J.
, and
Jay-Gerin
,
J.-P.
,
2019
, “
Radiolysis of Supercritical Water at 400 °C: Density Dependence of the Rate Constant for the Reaction of Hydronium Ions With Hydrated Electrons
,”
Phys. Chem. Chem. Phys.
,
21
(
18
), pp.
9141
9144
.10.1039/C9CP01190K
45.
Ziegler
,
J. F.
,
Bierdack
,
J. P.
, and
Ziegler
,
M. D.
,
2015
,
SRIM—The Stopping and Range of Ions in Matter
,
SRIM Co
,
Chester, MD
.
46.
Metatla
,
N.
,
Lafond
,
F.
,
Jay-Gerin
,
J.-P.
, and
Soldera
,
A.
,
2016
, “
Heterogeneous Character of Supercritical Water at 400 °C and Different Densities Unveiled by Simulation
,”
RSC Adv.
,
6
(
36
), pp.
30484
30487
.10.1039/C5RA25067F
47.
Meesungnoen
,
J.
,
Guzonas
,
D.
, and
Jay-Gerin
,
J.-P.
,
2010
, “
Radiolysis of Supercritical Water at 400 °C and Liquid-Like Densities Near 0.5 g/cm3: A Monte Carlo Calculation
,”
Can. J. Chem.
,
88
(
7
), pp.
646
653
.10.1139/V10-055
48.
Lea
,
D. E.
,
1946
,
Actions of Radiations on Living Cells
,
Cambridge University Press
,
Cambridge, UK
, Chap. 2.
49.
Morrison
,
P.
,
1952
, “
Radiation in Living Matter: The Physical Processes
,”
Symposium on Radiobiology: The Basic Aspects of Radiation Effects on Living Systems
,
J. J.
Nickson
, ed.,
Wiley
,
New York
, pp.
1
12
.
50.
Franck
,
J.
, and
Rabinowitsch
,
E.
,
1934
, “
Some Remarks About Free Radicals and the Photochemistry of Solutions
,”
Trans. Faraday Soc.
,
30
, pp.
120
131
.10.1039/tf9343000120
51.
Mozumder
,
A.
,
1999
,
Fundamentals of Radiation Chemistry
,
Academic Press
,
San Diego, CA
.
52.
Lamb
,
W. J.
,
Hoffman
,
G. A.
, and
Jonas
,
J.
,
1981
, “
Self-Diffusion in Compressed Supercritical Water
,”
J. Chem. Phys.
,
74
(
12
), pp.
6875
6880
.10.1063/1.441097
53.
Bandura
,
A. V.
, and
Lvov
,
S. N.
,
2006
, “
The Ionization Constant of Water Over Wide Ranges of Temperature and Density
,”
J. Phys. Chem. Ref. Data
,
35
(
1
), pp.
15
30
.10.1063/1.1928231
54.
Spinks
,
J. W. T.
, and
Woods
,
R. J.
,
1990
,
An Introduction to Radiation Chemistry
, 3rd ed.,
Wiley
,
New York
.
55.
Byakov
,
V. M.
, and
Stepanov
,
S. V.
,
2006
, “
The Mechanism for the Primary Biological Effects of Ionizing Radiation
,”
Phys. Usp.
,
49
(
5
), pp.
469
487
.10.1070/PU2006v049n05ABEH005783
56.
Kim
,
H.
,
Mitton
,
D. B.
, and
Latanision
,
R. M.
,
2010
, “
Effect of pH and Temperature on Corrosion of Nickel-Base Alloys in High Temperature and Pressure Aqueous Solutions
,”
J. Electrochem. Soc.
,
157
(
5
), pp.
C194
C199
.10.1149/1.3337230
57.
Uchida
,
S.
,
2008
, “
Corrosion of Structural Materials and Electrochemistry in High Temperature Water of Nuclear Power Systems
,”
Power Plant Chem.
,
10
(
11
), pp.
630
649
.
58.
Peng
,
Q.
,
Li
,
G.
, and
Shoji
,
T.
,
2003
, “
The Crack Tip Solution Chemistry in Sensitized Stainless Steel in Simulated Boiling Water Reactor Water Studied Using a Microsampling Technique
,”
J. Nucl. Sci. Technol.
,
40
(
6
), pp.
397
404
.10.1080/18811248.2003.9715371
You do not currently have access to this content.