Abstract

This study investigates the criticality characteristics of debris beds that may have been formed through the molten–core–concrete-interaction (MCCI) at the pedestal floor of the damaged reactors in Fukushima Daiichi Nuclear Power Station. These were modeled as UO2-concrete systems submerged in water. First, a conservative model was used to evaluate the impact that the presence of concrete has on the neutron multiplication factor (keff) of debris beds. The good moderation capacities of concrete were proved, and it was found that recriticality would be possible under the considered conservative assumptions. Second, a more realistic model was used to perform an uncertainty and sensitivity analysis of a wide range of debris parameters (debris porosity, core meltdown grade, debris size, debris composition, concrete erosion factor, etc.). In this case, the results indicate that the probability of a recriticality event is very remote. It was also found that the presence of boron (B4C) from the control rods within debris has by far the highest influence on keff.

References

1.
Nuclear Damage Compensation and Decommissioning Facilitation Corporation
,
2016
, “
Technical Strategic Plan 2016 for Decommissioning of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings, Inc
,”
Nuclear Damage Compensation and Decommissioning Facilitation Corporation
, Report.
2.
International Research Institute for Nuclear Decommissioning (IRID),
2018
, “
Annual Research Report 2017
,”
International Research Institute for Nuclear Decommissioning
, Report.
3.
Tonoike
,
K.
,
Watanabe
,
T.
,
Gunji
,
S.
,
Yamane
,
Y.
,
Nagaya
,
Y.
,
Umeda
,
M.
,
Izawa
,
K.
, and
Ogawa
,
K.
,
2019
, “
Progress of Criticality Control Study on Fuel Debris by Japan Atomic Energy Agency to Support Secretariat of Nuclear Regulation Authority
,”
11th International Conference on Nuclear Criticality Safety
,
Paris, France
, Sept. 15–20.
4.
Tonoike
,
K.
, and
Yamane
,
Y.
,
2015
, “
Development of Criticality Risk Evaluation Method for Fuel Debris in Fukushima- Daiichi NPS
,”
Proceeding of ICNC
,
Charlotte, NC
, Sept. 13–17, pp.
1517
1528
.
5.
Tonoike
,
K.
,
Yamane
,
Y.
,
Umeda
,
M.
,
Izawa
,
K.
, and
Sono
,
H.
,
2015
, “
Study on Criticality Control of Fuel Debris by Japan Atomic Energy Agency to Support Nuclear Regulation Authority of Japan
,”
Proceeding of ICNC
,
Charlotte, NC
, Sept. 13–17, pp.
20
27
.
6.
Izawa
,
K.
,
Uchida
,
Y.
,
Ohkubo
,
K.
,
Totsuka
,
M.
,
Sono
,
H.
, and
Tonoike
,
K.
,
2012
, “
Infinite Multiplication Factor of Low-Enriched UO2–Concrete System
,”
J. Nucl. Sci. Technol.
,
49
(
11
), pp.
1043
1047
.10.1080/00223131.2012.730893
7.
Tonoike
,
K.
,
2015
, “
Criticality Characteristics of MCCI Products Possibly Produced in Reactors of Fukushima Daiichi Nuclear Power Station
,”
Proceeding of ICNC
,
Charlotte, NC
, Sept. 13–17, pp.
13
17
.
8.
TomoakiKiyoshi
,
W.
,
Shouhei
,
O. A.
, and
Tonoike
,
K.
,
2019
, “
Criticality Characteristics of Fuel Debris Mixed by Fuel With Different Burnups Based on Fuel Loading Pattern
,”
11th International Conference on Nuclear Criticality Safety
,
Paris, France
, Sept.
9.
Sono
,
H.
,
Tonoike
,
K.
,
Izawa
,
K.
,
Kida
,
T.
,
Kobayashi
,
F.
,
Sumiya
,
M.
,
Fukaya
,
H.
,
Umeda
,
M.
,
Ogawa
,
K.
, and
Miyoshi
,
Y.
,
2015
, “
Modification of the STACY Critical Facility for Experimental Study on Fuel Debris Criticality Control
,”
Nuclear Back-End and Transmutation Technology for Waste Disposal
,
Springer
,
Berlin
, pp.
261
268
.
10.
Gunji
,
S.
,
Tonoike
,
K.
,
Izawa
,
K.
, and
Sono
,
H.
,
2017
, “
Study of Experimental Core Configuration of the Modified STACY for Measurement of Criticality Characteristics of Fuel Debris
,”
Prog. Nucl. Energy
,
101
, pp.
321
328
.10.1016/j.pnucene.2017.03.002
11.
Goorley
,
J. T.
,
James
,
M. R.
,
Booth
,
T. E.
,
Brown
,
F. B.
,
Bull
,
J. S.
,
Cox
,
L. J.
,
Durkee
,
J. W.
, Jr.
,
Elson
,
J. S.
,
Fensin
,
M.
,
Lorne
,
Forster
,
R. A.
, III
,
Hendricks
,
J. S.
,
Hughes
,
H.
,
Grady
, III
,
Johns
,
R. C.
,
Kiedrowski
,
B. C.
,
Martz
,
R. L.
,
Mashnik
,
S. G.
,
McKinney
,
G. W.
,
Pelowitz
,
D. B.
,
Prael
,
R. E.
, and
Sweezy
,
J.
Ed.,
Waters
,
L. S.
,
Wilcox
,
T.
, and
Zukaitis
,
A. J.
,
2013
, “Initial MCNP6 Release Overview—MCNP6 Version 1.0”.
12.
Bonnet
,
J.-M.
,
Cranga
,
M.
,
Vola
,
D.
,
Marchetto
,
C.
,
Kissane
,
M.
,
Robledo
,
F.
,
Farmer
,
M. T.
,
Spengler
,
C.
,
Basu
,
S.
, and
Atkhen
,
K.
,
2017
, “
State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability
,”
Organisation for Economic Co-Operation and Development
,
The Netherlands
, Report No. NEA--7392.
13.
Sevón
,
T.
,
2005
, “
Molten Core-Concrete Interactions in Nuclear Accidents. Theory and Design of an Experimental Facility
,”
VTT Technical Research Centre of Finland
,
Espoo, Finland
.
14.
Robb
,
K. R.
,
Francis
,
M. W.
, and
Farmer
,
M. T.
,
2013
, “
Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL/TM-2012/455.
15.
TEPCO Holdings,
2013
, “
Evaluation of the Situation of Cores and Containment Vessels of Fukushima Daiichi Nuclear Power Station Units-1 to 3 and Examination into Unsolved Issues in the Accident Progression
,” Progress Report No. 4.
16.
Pellegrini
,
M.
,
2015
, “
Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Plant (BSAF Project)
,” NEA/CSNI, Report No.
17.
McConn
,
R. J.
, Jr.
,
Gesh
,
C. J.
,
Pagh
,
R. T.
,
Rucker
,
R. A.
, and
Williams
,
R. G.
, III
,
2011
, “
Compendium of Material Composition Data for Radiation Transport Modeling
,”
PNNL-15870 Rev
,
1
(
4
), p.
112
.
18.
Zhdanov
,
V.
,
1999
, “COtelS Project (4): Structural Investigation of Solidified Debris in MCCI”.
19.
Freiría López
,
M.
,
Buck
,
M.
, and
Starflinger
,
J.
,
2019
, “
Neutronic Modeling of Debris Beds for a Criticality Evaluation
,”
Ann. Nucl. Energy
,
130
, pp.
164
172
.10.1016/j.anucene.2019.02.034
20.
Magallon
,
D.
,
2006
, “
Characteristics of Corium Debris Bed Generated in Large-Scale Fuel-Coolant Interaction Experiments
,”
Nucl. Eng. Des.
,
236
(
19–21
), pp.
1998
2009
.10.1016/j.nucengdes.2006.03.038
21.
Nishihara
,
K.
,
Iwamoto
,
H.
, and
Suyama
,
K.
,
2012
, “
Estimation of Fuel Compositions in Fukushima-Daiichi Nuclear Power Plant
,”
Japan Atomic Energy Agency
, Technical Report.
22.
NEA (Nuclear Energy Agency)
,
2016
, “
Burn-up Credit Criticality Safety Benchmark Phase III-C. Nuclide Composition and Neutron Multiplication Factor of a Boiling Water Reactor Spent Fuel Assembly for Burn-up Credit and Criticality Control of Damaged Nuclear Fuel
,”
Organization for Economic Cooperation and Development
, Technical Report No. NEA/NSC/R/(2015)6.
23.
Kloos
,
M.
,
2016
, “SUSA Version 4.0 User's Guide and Tutorial,” Report.
24.
Glaeser
,
H.
,
2008
, “
GRS Method for Uncertainty and Sensitivity Evaluation of Code Results and Applications
,”
Sci. Technol. Nucl. Install.
,
2008
, pp.
1
7
.10.1155/2008/798901
25.
Wilks
,
S. S.
,
1941
, “
Determination of Sample Sizes for Setting Tolerance Limits
,”
Ann. Math. Stat.
,
12
(
1
), pp.
91
96
.10.1214/aoms/1177731788
26.
KudinovKonovalenko
,
P.
,
Grishchenko
,
A.
,
Yakush
,
D.
,
Basso
,
S.
,
Lubchenko
,
S. N.
, and
Karbojian
,
A.
,
2013
, “
Investigation of Debris Bed Formation, Spreading and Coolability
,”
Nordisk Kernesikkerhedsforskning
,
Roskilde, Denmark
, Report No. NKS 287, pp.
1
97
.
You do not currently have access to this content.