Abstract

The effects of postulated accidents, including dynamic effects of pipe ruptures, must be analyzed for licensing of nuclear power plants (NPPs). Applicants and licensees of NPPs have struggled to address U.S. Nuclear Regulatory Commission (NRC) expectations to assess if high energy line break (HELB) jet impingement on structures and components can lead to dynamic amplification, and to accurately simulate blast wave-induced loadings. In this paper, evaluation of the potential for load amplification and occurrence of resonance conclusively demonstrates that the phenomenon does not occur. In a HELB, several physical parameters of jets issuing from a ruptured pipe—such as nonequilibrium condensation of steam, unsteady separation between the jet exit and target, nonorthogonal alignment of jet axis to impingement surface, uneven impingement surfaces, or mismatch of jet excitation frequency and target natural frequency—prevent occurrence of the phase lock conditions needed to initiate and maintain a resonance. The analytical approach to evaluate the blast wave-induced loading applied a pressure vessel burst (PVB) correlation instead of performing computational fluid dynamics (CFD) analysis for all break locations. Three-dimensional (3D) CFD analysis of blast wave transient propagation provided the basis to develop benchmarking factors for use with the PVB correlation. The simplified methodology utilizes shockwave reflection, shape, and environment factors for application to impacted targets, which significantly reduces the amount of time to evaluate all break locations. The modified PVB method is also more appropriate than an explosion-type correlation to model the blast wave pressures from steam pipe breaks.

References

1.
Nuclear Regulatory Commission
,
2012
, “
Advisory Committee on Reactor Safeguards
,”
U.S. EPR Subcommittee Official Transcript of Proceedings
,
Nuclear Regulatory Commission
,
Rockville, MD
, accessed Feb. 21, 2012, https://www.nrc.gov/docs/ML1207/ML120760106.pdf
2.
USNRC
,
2016
, “
Determination of Rupture Locations and Dynamic Effects Associated With the Postulated Rupture of Piping
,” Section 3.6.2, Revision 3,
USNRC
,
Rockville, MD
, Standard No. NUREG-0800.
3.
American Nuclear Society
,
1988
, “
Design Basis for Protection of Light Water Nuclear Power Plants Against the Effects of Postulated Pipe Rupture
,”
American Nuclear Society
,
La Grange Park, IL
, Standard No. ANSI/ANS 58.2-1988 (W1998).
4.
Ho
,
C. M.
, and
Nosseir
,
N. S.
,
1981
, “
Dynamics of an Impinging Jet—Part 1: The Feedback Phenomenon
,”
J. Fluid Mech.
,
105
(
1
), pp.
119
142
.10.1017/S0022112081003133
5.
Inman
,
J. A.
,
Danehy
,
P. M.
,
Nowak
,
R. J.
, and
Alderfer
,
D. W.
,
2009
, “
The Effect of Impingement on Transitional Behavior in Underexpanded Jets
,”
AIAA Paper No. 2009-591
.10.2514/6.2009-591
6.
Kawasaki
,
T.
,
Naitoh
,
M.
, and
Kamo
,
T.
,
1987
, “
Numerical and Experimental Study of Two-Phase Jet Impingement
,”
Nucl. Eng. Des.
,
99
, pp.
15
23
.10.1016/0029-5493(87)90103-8
7.
Alam
,
M. M. A.
,
Matsuo
,
S.
, and
Setoguchi
,
T.
,
2008
, “
Effect of Moisture on Supersonic Impinging Jet Flows
,”
Proceedings of the Fourth BSME-ASME International Conference on Thermal Engineering
,
Dhaka, Bangladesh
, pp.
210
215
.
8.
Heinze
,
D.
,
2015
, “
Physically-Based Models for Two-Phase Flow Phenomena in Steam Injectors
,”
Karlsruhe Institute of Technology
,
Baden-Württemberg, Germany
, Report No. 7704.
9.
Alam
,
M. M. A.
,
Matsuo
,
S.
, and
Setoguchi
,
T.
,
2010
, “
Supersonic Moist Air Impingements on Flat Surface
,”
J. Therm. Sci.
,
19
(
1
), pp.
51
59
.10.1007/s11630-010-0051-3
10.
Marklund
,
J. E.
,
1985
, “
Evaluation of Free Jet and Jet Impingement Tests With Hot Water and Steam
,” Final Report Covering Phase 1 and 2 of the JITEV Project,
Nyköping, Sweden
, Report No. STUDSVIK/NR-85/54.
11.
Kawanishi
,
K.
,
Isono
,
M.
,
Masuda
,
F.
, and
Nakatogawa
,
T.
,
1986
, “
Experimental Study on Jets Formed Under Discharges of High-Pressure Subcooled Water and Steam-Water Mixtures From Short Nozzles
,”
Nucl. Eng. Des.
,
95
, pp.
243
251
.10.1016/0029-5493(86)90051-8
12.
Forrest
,
C. F.
,
Shin
,
K. S.
,
Midvidy
,
W. I.
,
Pauls
,
R. E.
, and
Wahba
,
N.
,
1987
, “
Measurements of Impact Loads and Expansion of Flashing Water Jets
,”
Nucl. Eng. Des.
,
99
, pp.
53
61
.10.1016/0029-5493(87)90107-5
13.
Tam
,
C. K. W.
, and
Ahuja
,
K. K.
,
1990
, “
Theoretical Model of Discrete Tone Generation by Impinging Jets
,”
J. Fluid Mech.
,
214
(
1
), pp.
67
87
.10.1017/S0022112090000052
14.
Ransom
,
V.
,
2004
, “
Comments on GSI-191 Models for Debris Generation
,”
U.S. NRC
,
Rockville, MD
, ADAMS Accession Nos. ML050830341 and ML051320338, accessed June 1, 2017, https://www.nrc.gov/docs/ML0508/ML050830341.pdf
15.
Wallis
,
G.
,
2004
, “
The ANSI/ANS Standard 58.2-1988: Two Phase Jet Model
,”
U.S. NRC
,
Rockville, MD
, ADAMS Accession No. ML050830344, accessed June 1, 2017, https://adamswebsearch2.nrc.gov/webSearch2/view?Accession Number=ML050830344
16.
Zaman
,
K. B. M. Q.
,
1999
, “
Spreading Characteristics of Compressible Jets From Nozzles of Various Geometries
,”
J. Fluid Mech.
,
383
, pp.
197
228
.10.1017/S0022112099003833
17.
Low
,
J. K. C.
, and
Mathews
,
D. C.
,
1999
, “
Tabbed Nozzle for Jet Noise Suppression
,”
United Technologies
,
Farmington, CT
.
18.
Ito
,
M.
,
Oyama
,
A.
,
Fujii
,
K.
, and
Hayashi
,
K.
,
2006
, “
Flow Field Analysis of Jet Impinging on an Inclined Flat Plate at High Plate Angles
,”
AIAA Paper No. 2006-1047
.10.2514/6.2006-1047
19.
Gojon
,
R.
,
Bogey
,
C.
, and
Marsden
,
O.
,
2015
, “
Large-Eddy Simulation of Supersonic Planar Jets Impinging on a Flat Plate at an Angle of 60 to 90 Degrees
,”
AIAA Paper No. 2015-2209
.10.2514/6.2015-2209
20.
Dharavath
,
M.
, and
Chakraborty
,
D.
,
2013
, “
Numerical Simulation of Supersonic Jet Impingement on Inclined Plate
,”
Defense Sci. J.
,
63
(
4
), pp.
355
362
.http://dx.doi.org/10.14429/dsj.63.2545
21.
Alvi
,
F. S.
, and
Annaswamy
,
A.
,
2006
, “
Active Control of Supersonic Impinging Jets Using Supersonic Microjets
,”
AFOSR
,
Tallahassee, FL
, Grant No. F49620-03-1-0017.
22.
Ragaller
,
P.
, and
Annaswamy
,
A. M.
,
2011
, “
Impinging Jet Noise Suppression Using Water Microjets
,”
AIAA Paper No. 2011-913
.10.2514/6.2011-913
23.
Siemens
,
2014
, “
Basic Dynamic Analysis User's Guide
,”
Siemens Product Lifecycle Management Software
,
Plano, TX
.
24.
Baker
,
W. E.
, and
Tang
,
M. J.
,
1991
,
Gas, Dust and Hybrid Explosions
, Vol.
13
,
Elsevier
,
New York
, pp.
1
256
.
25.
Tang
,
M. J.
,
Cao
,
C. Y.
, and
Baker
,
Q. A.
,
1996
, “
Blast Effects From Vapor Cloud Explosions
,”
International Loss Prevention Symposium
,
Bergen, Norway
, June.
26.
Kinney
,
G. F.
, and
Graham
,
K. J.
,
1985
,
Explosive Shocks in Air
, 2nd ed.,
Springer-Verlag
,
New York
, p.
269
.
27.
Karlos
,
V.
, and
Solomos
,
G.
,
2013
, “
Calculation of Blast Loads for Application to Structural Components
,” Administrative Arrangement No. JRC 32253-2011 With DG-HOME, Activity A5—Blast Simulation Technology Development, Report No. EUR 26456EN.
28.
Cler
,
D. L.
,
2003
, “
Techniques for Analysis and Validation of Unsteady Blast Wave Propagation
,”
U.S. Army ARDEC
,
Waterviet, New York
, Report No. ARCCB-TR-03012.
29.
Pal
,
S.
,
Iek
,
C.
,
Peltier
,
L. J.
,
Smirnov
,
A.
,
Knight
,
K. J.
,
Zheng
,
D.
, and
Jarvis
,
J.
,
2016
, “
Verification and Validation of CFD Model to Predict Jet Loads and Blast Wave Pressures From High Pressure Superheated Steam Line Break
,”
ASME Paper No. POWER2016-59675
.10.1115/POWER2016-59675
30.
ANSYS, Inc.
,
2016
, “
ANSYS CFX, Release 17.0 Documentation
,”
ANSYS
,
Canonsburg, PA
.
31.
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,”
American Society of Mechanical Engineers
,
New York
, Standard No. V&V 20, p.
102
.
32.
Hopkins
,
H. B.
,
Konopka
,
W.
, and
Leng
,
J.
,
1979
, “
Validation of Scramjet Exhaust Simulation Technique at Mach 6
,”
NASA Contractor Report by Grumman Aerospace Corporation
,
Bethpage, NY
, Report No. 3003.
33.
Moore
,
M. J.
,
Walters
,
P. T.
,
Crane
,
R. I.
, and
Davidson
,
B. J.
,
1973
, “
Predicting the Fog Drop Size in Wet Steam Turbines
,”
Wet Steam 4 Conference, University of Warwick, Institute of Mechanical Engineers (UK)
,
London
, Paper No. C37/73.
34.
Kitade
,
K.
,
Nagatogawa
,
T.
,
Nishikawa
,
H.
,
Kawanishi
,
K.
, and
Tsuruto
,
C.
,
1979
, “
Experimental Study of Pipe Reaction Force and Jet Impingement Load at the Pipe Break
,”
International Association for Structural Mechanics in Reactor Technology (SMiRT-5)
,
Berlin, Germany
, F6/2.
35.
Orescanin
,
M. M.
, and
Austin
,
J. M.
,
2010
, “
Exhaust of Underexpanded Jets From Finite Reservoirs
,”
J. Propul. Power
,
26
(
4
), pp.
744
753
.10.2514/1.47673
36.
Moody
,
F. J.
,
1969
, “
Prediction of Blowdown Thrust and Jet Forces
,”
ASME Paper No. 69-HT-31
.10.1115/69-HT-31
37.
Center for Chemical Process Safety
,
2010
,
Guidelines for Vapor Cloud Explosion Pressure Vessel Burst, BLEVE and Flash Fire Hazards
, 2nd ed.,
Wiley & Sons
,
Hoboken, NJ
, p.
456
.
38.
Williams
,
G. D.
, and
Williamson
,
E. B.
,
2012
, “
Procedure for Predicting Blast Loads Acting on Bridge Columns
,”
J. Bridge Eng.
,
17
(
3
), pp.
490
499
.10.1061/(ASCE)BE.1943-5592.0000265
You do not currently have access to this content.