Abstract

As part of the generation IV reactors (GENIV), the European lead-cooled fast reactor (ELFR) is one of the most promising candidates to be part of the European energy framework in the near future. Alike most of the GENIV systems, the ELFR is still under development and having reliable computational tools that allow fast and accurate results become an important task in the modeling and simulation levels. In this work, the Serpent code is assessed. Serpent is a continuous-energy Monte Carlo (MC) code suitable for reactor physic calculations and is used for the modeling of the ELFR system. The results were compared with the reference data that were obtained with the Monte Carlo continuous energy burnup code (MCB). In order to verify the ELFR Serpent model, several neutronic parameters were compared to the reference results: the effective neutron multiplication factor (keff), the Doppler constant (KD), the reactivity effect of the coolant density, the effective delayed neutron fraction (βeff), and the effective prompt neutron lifetime (Λ). In addition, the axial and radial power distributions were also obtained and verified. A good approximation between Serpent and MCB values was obtained.

References

1.
GENIV International Forum
,
2017
, “
A Technology Roadmap for Generation IV Nuclear Energy System
,” accessed June 7, 2020, https://www.gen-4.org/gif/jcms/c_9352/technology-roadmap
2.
Alemberti
,
A.
,
Smirnov
,
V.
,
Smith
,
C. F.
, and
Takahashi
,
M.
,
2014
, “
Overview of Lead-Cooled Fast Reactor Activities
,”
Prog. Nucl. Energy
,
77
, pp.
300
307
.10.1016/j.pnucene.2013.11.011
3.
Grasso
,
G.
,
Tuček
,
K.
,
Döderlein
,
C.
, and
Alemberti
,
A.
,
2013
, “
Definition of the LFR Core and Neutronic Characterization
,”
Seventh EURATOM Framework Programme, European Commission
, Petten, The Netherlands, p.
81
.
4.
Stanisz
,
P.
,
Oettingen
,
M.
, and
Cetnar
,
J.
,
2016
, “
Monte Carlo Modeling of Lead-Cooled Fast Reactor in Adiabatic Equilibrium State
,”
Nucl. Eng. Des.
,
301
, pp.
341
352
.10.1016/j.nucengdes.2016.02.025
5.
Juárez-Martínez
,
L. C.
, and
François
,
J. L.
,
2018
, “
Comparative Neutronic Study of Homogeneous and Heterogeneous Thorium Fuel Based Core Design in a Lead-Cooled Fast Reactor
,”
Ann. Nucl. Energy
,
114
, pp.
102
109
.10.1016/j.anucene.2017.12.022
6.
Juárez
,
L. C.
, and
François
,
J. L.
,
2019
, “
Study of the Homogeneous and Heterogeneous Am Transmutation in an ELFR-Like Reactor Loaded With Nitride Fuel
,”
Ann. Nucl. Energy
,
127
, pp.
19
29
.10.1016/j.anucene.2018.11.052
7.
Leppänen
,
J.
,
Pusa
,
M.
,
Viitanen
,
T.
,
Valtavirta
,
V.
, and
Kaltiaisenaho
,
T.
,
2015
, “
The Serpent Monte Carlo Code: Status, Development and Applications in 2013
,”
Ann. Nucl. Energy
,
82
, pp.
142
150
.10.1016/j.anucene.2014.08.024
8.
Oettingen
,
M.
,
Cetnar
,
J.
, and
Mirowski
,
T.
,
2015
, “
The MCB Code for Numerical Modeling of Fourth Generation Nuclear Reactors
,”
Comput. Sci.
,
16
(
4
), pp.
329
350
.10.7494/csci.2015.16.4.329
9.
Cetnar
,
J.
,
Królikowski
,
I.
, and
Oettingen
,
M.
,
2016
, “
Neutron Transport and Burnup Simulations With MCB—The Monte Carlo Continuous Energy Burn-Up Code
,” Monograph, AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Nuclear Energy, Krakow, Poland.
10.
Talamo
,
A.
,
Ji
,
W.
,
Cetnar
,
J.
, and
Gudowski
,
W.
,
2006
, “
Comparison of MCB and MONTEBURNS Monte Carlo Burnup Codes on a One-Pass Deep Burn
,”
Ann. Nucl. Energy
,
33
(
14–15
), pp.
1176
1188
.10.1016/j.anucene.2006.08.006
11.
Smith
,
C.
,
2010
, “
Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design
,” A Compendium of Reactor Technology, Lawrence Livermore National Laboratory, Livermore, CA, accessed Feb. 28, 2020, https://digital.library.unt.edu/ark:/67531/metadc840495/
12.
Grasso
,
G.
,
Petrovich
,
C.
,
Mattioli
,
D.
,
Artioli
,
C.
,
Sciora
,
P.
,
Gugiu
,
D.
,
Bandini
,
G.
,
Bubelis
,
E.
, and
Mikityuk
,
K.
,
2014
, “
The Core Design of ALFRED, a Demonstrator for the European Lead-Cooled Reactors
,”
Nucl. Eng. Des.
,
278
, pp.
287
301
.10.1016/j.nucengdes.2014.07.032
13.
Aufiero
,
M.
,
Cammi
,
A.
,
Fiorina
,
C.
,
Luzzi
,
L.
, and
Sartori
,
A.
,
2013
, “
A Multi-Physics Time-Dependent Model for the Lead Fast Reactor Single-Channel Analysis
,”
Nucl. Eng. Des.
,
256
, pp.
14
27
.10.1016/j.nucengdes.2012.11.019
14.
IAEA
,
2012
, “
Liquid Metal Coolants for Fast Reactors Cooled by Sodium, Lead, and Lead-Bismuth Eutectic
,” IAEA Nuclear Energy Series, Vienna, Austria, p.
95
.
15.
Pioro
, I. L.
,
2016
,
Handbook of Generation IV Nuclear Reactors
,
Elsevier—Woodhead Publishing (WP)
,
Duxford, UK
, p.
940
.
16.
Bortot
,
S.
, and
Artioli
,
C.
,
2011
, “
Investigation of the Void Reactivity Effect in Large-Size Lead Fast Reactors
,”
Ann. Nucl. Energy
,
38
(
5
), pp.
1004
1013
.10.1016/j.anucene.2011.01.017
17.
Lopez-Solis
,
R. C.
,
François
,
J. L.
,
Bastida-Ortiz
,
G. E.
,
Becker
,
M.
, and
Sánchez-Espinoza
,
V. H.
,
2016
, “
Fuel Depletion Analysis of a Small Sodium Fast Reactor With KANEXT and SERPENT
,”
Ann. Nucl. Energy
,
98
, pp.
26
35
.10.1016/j.anucene.2016.07.024
18.
Ponomarev
,
A.
,
Broeders
,
C. H. M.
,
Dagan
,
R.
, and
Becker
,
M.
,
2010
, “
Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors
,”
Proceedings of ICAPP
, San Diego, CA, pp.
13
17
.
You do not currently have access to this content.