Abstract

The analysis of deteriorated heat transfer (DHT) influence on the stress–strain state of a perspective core of small modular reactors with supercritical water (SMR SCWR) fuel assemblies is carried out based on experimental and numerical data. Experimental data for 3- and 7-rod assemblies of 600 mm height with twisting spacer screws, on which deterioration heat transfer regimes were observed. The analysis of the stress–strain state was performed for two cases of temperature field. In the first variant, the temperature field is estimated using computational fluid dynamics (CFD) with low-Re-effects accounting, which allows obtaining the maximum temperature, but incorrectly estimates the axial profile. In the second case, an experimental profile with an averaged tangential temperature value is considered. Strength analysis is performed using the developed numerical-analytical mechanical model of the rod assembly. Obtained results make it possible to establish what is more important for assessing the safety of perspective reactors: a conservative estimate of the maximum wall temperature or its local distribution.

References

1.
IAEA
,
2014
, “
Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)
,” IAEA, Vienna, Austria, Report No. IAEA-TECDOC-1746, accessed Apr. 1, 2021, https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1746_web.pdf
2.
IAEA
,
2020
, “
Understanding and Prediction of Thermohydraulic Phenomena Relevant to Supercritical Water Cooled Reactors (SCWRs)
,” IAEA, Vienna, Austria, Report No. IAEA-TECDOC-1900, accessed Apr. 1, 2021, https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1900web.pdf
3.
IAEA,
2020
,
Advances in Small Modular Reactor Technology Developments
,
IAEA
,
Vienna, Austria
, p.
354
.
4.
Razumovskiy
,
V. G.
,
Pis'mennyi
,
E. N.
,
Sidawi
,
K.
,
Pioro
,
I. L.
, and
Koloskov
,
A. E.
,
2016
, “
Experimental Heat Transfer in an Annular Channel and 3-Rod Bundle Cooled With Upward Flow of Supercritical Water
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
2
(
1
), p.
011010
.10.1115/1.4031818
5.
Razumovskiy
,
V. G.
,
Pis'mennyy
,
E. N.
,
Koloskov
,
A. E.
, and
Pioro
,
I. L.
,
2009
, “
Heat Transfer to Supercritical Water in Vertical 7-Rod Bundle
,” Proceedings of the 16th International Conference on Nuclear Engineering (
ICONE-16
), Orlando, FL, May 11–15, pp.
963
969
.10.1115/ICONE16-48954
6.
Brogna
,
C.
,
Pucciarelli
,
A.
,
Ambrosini
,
W.
,
Razumovskiy
,
V.
, and
Pis'mennyi
,
E.
,
2018
, “
Capabilities of High y+ Wall Approaches in Predicting Heat Transfer to Supercritical Fluids in Rod Bundle Geometries
,”
Ann. Nucl. Energy
,
120
, pp.
272
278
.10.1016/j.anucene.2018.05.053
7.
Liu
,
L.
,
Xiao
,
Z.
,
Yan
,
X.
,
Zeng
,
X.
, and
Huang
,
Y.
,
2013
, “
Heat Transfer Deterioration to Supercritical Water in Circular Tube and Annular Channel
,”
Nucl. Eng. Des.
,
255
, pp.
97
104
.10.1016/j.nucengdes.2012.09.025
8.
Filonov
,
V. V.
,
Filonova
,
Y. S.
,
Razumovskiy
,
V. G.
, and
Pis'mennyi
,
E. N.
,
2018
, “
On Experimental and Computational Investigation of Heat Transfer Deterioration and Hydraulic Resistance in Annular Channel and SCWR 3-Rod Bundle
,” Proceedings of the 26th International Conference on Nuclear Engineering (
ICONE-26
), London, England, July 22–26, Paper No. ICONE26-81289.10.1115/ICONE26-81289
9.
Wen
,
Q. L.
, and
Gu
,
H. Y.
,
2010
, “
Numerical Simulation of Heat Transfer Deterioration Phenomenon in Supercritical Water Through Vertical Tube
,”
Ann. Nucl. Energy
,
37
(
10
), pp.
1272
1280
.10.1016/j.anucene.2010.05.022
10.
Kurganov
,
V. A.
, and
Maslakova
,
I. V.
,
2016
, “
Normal and Deteriorated Heat Transfer Upon Heating of Turbulent Flows of Heat Carriers With Variable Physical Properties in Tubes
,”
High Temp.
,
54
(
4
), pp.
577
598
.10.1134/S0018151X16040131
11.
Pucciarelli
,
A.
,
Sharabi
,
M.
, and
Ambrosini
,
W.
,
2016
, “
Prediction of Heat Transfer to Supercritical Fluids by the Use of Algebraic Heat Flux Models
,”
Nucl. Eng. Des.
,
297
, pp.
257
266
.10.1016/j.nucengdes.2015.11.029
12.
ANSYS
,
2017
,
ANSYS CFX 18-Solver Theory Guide
,
ANSYS
,
Canonsburg, PA
, p.
347
.
13.
Menter
,
F. R.
,
Matyushenko
,
A.
, and
Lechner
,
R.
,
2020
, “
Development of a Generalized K-ω Two-Equation Turbulence Model
,”
New Results in Numerical and Experimental Fluid Mechanics XII. DGLR 2018. Notes on Numerical Fluid Mechanics and Multidisciplinary Design
,
A.
Dillmann
,
G.
Heller
,
E.
Krämer
,
C.
Wagner
,
C.
Tropea
, and
S.
Jakirlić
, eds.,
Springer
,
Cham, Switzerland
, pp.
101
109
.10.1007/978-3-030-25253-3_10
14.
Flügge
,
W.
,
2013
,
Stresses in Shells
,
Springer Science & Business Media
,
Berlin, Germany
, p.
526
.
15.
Dubyk
,
Y. R.
, and
Seliverstova
,
I. P.
,
2019
, “
Application of Approximate Solutions From the Shell Theory to the Problem of Action of Concentrated Forces Upon a Hollow Cylinder
,”
Mater. Sci.
,
55
(
2
), pp.
242
250
.10.1007/s11003-019-00295-y
16.
Kan
,
S. N.
,
1966
,
Structural Mechanics of Shells
,
Mashynostroyenie
,
Moscow, Russia
, p.
508
.
17.
T. A.
Driscoll
,
N.
Hale
, and
L. N.
Trefethen
, eds.,
2014
,
Chebfun Guide
,
Pafnuty Publications
,
Oxford, UK
.
You do not currently have access to this content.