Abstract

Uncertainty and Sensitivity analysis methods are often used in severe accident analysis for validating the complex physical models employed in the system codes that simulate such scenarios. This is necessitated by the large uncertainties associated with the physical models and boundary conditions employed to simulate severe accident scenarios. Uncertainty analysis involves primarily the estimation of the distribution of a key figure-of-merit (FOM) following the propagation of uncertainty in selected input parameters through a system code. The input parameters are sampled within defined ranges based on assigned probability distribution functions (PDFs) for the required number of code runs/realizations using stochastic sampling techniques. Input parameter selection is based on their importance to the key FOM, which is determined by the parameter identification and ranking table (PIRT). Sensitivity analysis investigates the contribution of each uncertain input parameter to the uncertainty of the selected FOM. In this study, the integrated severe accident analysis code MELCOR was coupled with a design analysis kit for optimization and terascale applications (DAKOTA), an optimization and uncertainty quantification tool in order to investigate the effect of input parameter uncertainty on hydrogen generation. The methodology developed was applied to the Fukushima Daiichi unit 1 nuclear power plant (NPP) accident scenario, which was modeled in another study. The results show that there is approximately 22.46% uncertainty in the amount of hydrogen generated as estimated by a single MELCOR run given the uncertainty in selected input parameters. The sensitivity analysis results also reveal that MELCOR input parameters: COR_SC 1141(melt flow rate per unit width at breakthrough candling), COR_ZP (porosity of fuel debris beds), and COR_EDR (characteristic debris size in the core region) contributed most significantly to the uncertainty in hydrogen generation.

References

1.
Mattie
,
P.
,
Gauntt
,
R.
,
Ross
,
K.
,
Bixler
,
N.
,
Osborn
,
D.
,
Sallaberry
,
C.
, and
Jones
,
J.
,
2016
, “
State-of-the-Art Reactor Consequence Analyses Project Uncertainty Analysis of the Unmitigated Long-Term Station Blackout of the Peach Bottom Atomic Power Station Draft Report Office of Nuclear Regulatory Research
,” U.S. Nuclear Regulatory Commission, Washington, DC, accessed Nov. 24, 2021, http://www.nrc.gov/reading-rm.html
2.
Chang
,
R.
,
Schaperow
,
J.
,
Ghosh
,
T.
,
Barr
,
J.
,
Tinkler
,
C.
, and
Stutzke
,
M.
,
2021
, “
State-of-the-Art Reactor Consequence Analyses (SOARCA) Report: Part 2 (NUREG-1935
),” U.S. Nuclear Regulatory Commission, Washington DC, accessed Nov. 11, 2012, https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1935/final/p2/index.html
3.
Roberts
,
K.
, and
Sanders
,
R.
,
2013
, “
Application of Uncertainty Analysis to MAAP4 Analyses for Level 2 PRA Parameter Importance Determination
,”
Nucl. Eng. Technol.
,
45
(
6
), pp.
767
790
.10.5516/NET.02.2013.524
4.
D'OnorioGiannetti
,
M.
,
Mascari
,
F. F.
, and
Caruso
,
G.
,
2018
, “
Uncertainty Analyses Using the RAVEN Software Tool Coupled With MELCOR Severe Accident Code
,”
American Nuclear Society Best Estimate Plus Uncertainty International Conference (BEPU 2018) BEPU2018-282 Real Collegio
, Lucca, Italy, May 13–19, Paper No. 282.
5.
Bersano
,
A.
, and
Mascari
,
F.
,
2019
, “
Evaluation of a Double-Ended Guillotine LBLOCA Transient in a Generic Three-Loops PWR-900 With TRACE Code Coupled With DAKOTA Uncertainty Analysis
,”
ATW-Int. J. Nucl. Power
,
64
(
11–12
), pp.
526
532
.
6.
Wilks
,
S. S.
,
1941
, “
Determination of Sample Sizes for Selecting Tolerance Limits
,”
Ann. Math. Stat.
,
12
(
1
), pp.
91
96
.10.1214/aoms/1177731788
7.
Somerville
,
P. N.
,
1958
, “
Tables for Obtaining Non-Parametric Tolerance Limits
,”
Ann. Math. Stat.
,
29
(
2
), pp.
599
601
.10.1214/aoms/1177706640
8.
USNRC
,
2010
, “
Regulatory Guide Office of Nuclear Regulatory Research, an Acceptable Model and Related Statistical Methods for the Analysis of Fuel Densification
,” USNRC, Washington DC, accessed Nov. 12, 2021, http://www.nrc.gov/reading-rm/adams.html, under Accession No. ML093360318.
9.
Helton
,
J. C.
,
Davis
,
F. J.
, and
Johnson
,
J. D.
,
2005
, “
A Comparison of Uncertainty and Sensitivity Analysis Results Obtained With Random and Latin Hypercube Sampling
,”
Reliab. Eng. Syst. Saf.
,
89
(
3
), pp.
305
330
.10.1016/j.ress.2004.09.006
10.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
, May
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), p.
239
.10.2307/1268522
11.
Iman
,
R. L.
,
Helton
,
J. C.
, and
Campbell
,
J. E.
,
1981
, “
An Approach to Sensitivity Analysis of Computer Models: Part I—Introduction, Input Variable Selection and Preliminary Variable Assessment
,”
J. Qual. Technol.
,
13
(
3
), pp.
174
183
.10.1080/00224065.1981.11978748
12.
Iman
,
R. L.
,
Davenport
,
J. M.
, and
Zeigler
,
D. K.
,
1980
, “
Latin Hypercube Sampling (Program User's Guide) [LHC, in FORTRAN]
,” Sandia National Laboratory, Albuquerque, NM, accessed Nov. 24, 2021, https://www.osti.gov/biblio/5571631
13.
Kollig
,
T.
, and
Keller
,
A.
,
2002
, “
Efficient Multidimensional Sampling
,”
Comput. Graph. Forum
,
21
(
3
), pp.
557
563
.10.1111/1467-8659.00706
14.
Sevón
,
T.
,
2015
, “
A MELCOR Model of Fukushima Daiichi Unit 1 Accident
,”
Ann. Nucl. Energy
,
85
, pp.
1
11
.10.1016/j.anucene.2015.04.031
15.
Humphries
,
L.
,
Figueroa
,
V.
,
Young
,
M.
,
Louie
,
D.
, and
Reynolds
,
J.
,
2015
, “
MELCOR Computer Code Manuals Volume 1: Primer and Users' Guide
,” Sandia National Laboratory, Albuquerque, NM, and Livermore, CA.
16.
Eldred
,
M.
,
Giunta
,
A. A.
,
van Bloemen Waanders
,
B. G.
,
Wojtkiewicz
,
S. F.
,
Hart
,
W. E.
, and
Alleva
,
M.
,
2002
, “DAKOTA, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0 Developers Manual, Sandia National Laboratory, Albuquerque, NM. accessed Nov. 24, 2021, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.5507&rep=rep1&type=pdf
17.
Rickard
,
M.
,
2021
, “
Modeling of PWR LOCA Experiments in RELAP5 Based on PREMIUM Benchmark
,” Department of Applied Physics, Chalmers University of Technology, Gothenburg, accessed Nov. 12, 2013, https://odr.chalmers.se/handle/20.500.12380/194451
18.
Bohnhoff
,
W. J.
,
Brian
,
A.
,
Michael
,
M.
,
Eldred
,
S.
,
Geraci
,
G.
,
Hooper
,
R. W.
,
Jakeman
,
J. D.
,
Maupin
,
K. A.
,
Monschke
,
J. A.
,
Rushdi
,
A. A.
,
Stephens
,
J. A.
,
Swiler
,
L. P.
, and
Wildey
,
T. M.
,
2019
, “
DAKOTA, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.11 User's Manual
,” Sandia National Laboratory, Albuquerque, accessed: Nov. 12, 2021, https://dakota.sandia.gov/sites/default/files/docs/6.11/Users-6.11.0.pdf
19.
Gauntt
,
R. O.
,
Bixler
,
N. E.
, and
Wagner
,
K. C.
,
2014
, “
An Uncertainty Analysis of the Hydrogen Source Term for a Station Blackout Accident in Sequoyah Using MELCOR 1.8.5
,” Sandia National Laboratories, Albuquerque, NM.
20.
Ross
,
K.
,
Phillips
,
J.
,
Gauntt
,
R. O.
, and
Wagner
,
K. C.
,
2014
, “
MELCOR Best Practices as Applied in the State-of-the-Art Reactor Consequence Analyses (SOARCA) Project
,” U.S. Nuclear Regulatory Commission, Washington DC, Standard No. NUREG/CR-7008, accessed Nov. 24, 2021, http://www.nrc.gov/reading-rm.html.
21.
Bonnin
,
J.
,
Berthet
,
B.
,
Bayle
,
S.
,
Hanniet
,
N.
,
Jeury
,
F.
,
Gaillot
,
S.
,
Garnier
,
Y.
,
Martin
,
C.
,
Laurie
,
M.
, and
Siri
,
B.
,
1997
, “
Phebus PF, FPT1—Preliminary Report, IPSN/DRS/SEA/LERES/97/727, Note Technique LERES No. 24/97, Document Phebus PF IP/97/334
,” Technical Report.
22.
Jacquemain
,
D.
,
Bourdon
,
S.
,
de Braemaeker
,
A.
, and
Barrachin
,
M.
,
2000
, “
PHEBUS FPT1 Final Report
,” Cadarache, France.
23.
Hagen
,
S.
,
Hofmann
,
P.
,
Schanz
,
G.
, and
Sepold
,
L.
,
1989
, “
Results of the CORA Experiments on Severe Fuel Damage With and Without Absorber Material
,”
Proceedings of 26th National Heat Transfer Conference
, Philadelphia, PA, Vol.
85
, Aug. 6, 1989, p.
269
.
24.
Boafo
,
E.
, “
MELCOR Realizations Results
,” Mendeley Data, v1, Elsevier, London, accessed Nov. 12, 2021, https://data.mendeley.com/datasets/nk76kt5f7n/draft?a=d4168767-ecff-4336-82a1-c1067da13f2d
25.
Cronenberg
,
A. W.
,
1990
, “
In-Vessel Zircaloy Oxidation/Hydrogen Generation Behavior During Severe Accidents Engineering Science and Analysis Prepared for U.S. Nuclear Regulatory Commission
,” U.S. Nuclear Regulatory Commission, Albuquerque, NM, accessed Nov. 12, 2021, https://www.nrc.gov/docs/ML0922/ML092290095.pdf
You do not currently have access to this content.