Abstract

A new generation of fast breeder reactors (FBRs) is under development with the objective of making nuclear energy more sustainable. Most promising reactor designs are loaded, at least during their early phase of deployment, with UO2–PuO2 mixed oxide fuel (MOX). Concentrations of plutonium dioxide that are foreseen for FBRs range up to 30 mol%. This highlights the need for a sound and deep knowledge of the thermophysical properties of PuO2. This statement is valid in the case of heat capacity, as evaluations on MOX fuel are usually carried out by using the Neumann–Kopp rule. Heat capacity is relevant for thermal conductivity and performance under transient conditions. However, measurements on the heat capacity of plutonium dioxide are scarce or even lacking at high temperature. Numerical methodologies such as molecular dynamics (MD) calculations have been employed to overcome the difficulties encountered in experimental measurements. Besides numerical also theoretical models have been applied as valuable tools for interpretation of enthalpy measurements. Nevertheless, due to the mentioned lack of experimental measurement issues such as the existence of the Bredig transition and the formation of defects at high temperatures are still debated in nuclear fuel research. Excess enthalpy seen in measurements of actinides oxides has been explained by means of either electronic disorder or anion disorder. In the case of plutonium dioxide, a common consensus has been reached on the hypothesis that anion disorder leads to a significant increase in heat capacity at high temperature. Konings and Beneš have developed a model that accounts for this phenomenon. Their correlation has been often included in models of heat capacity and employed for recommendations. However, in the high-temperature region, MD calculations showed an underestimation of model predictions that was not compensated by the presence of a peak of heat capacity that has been interpreted as the Bredig transition. Based on these observations, this paper presents MD evaluations on the heat capacity of PuO2 at high temperature that are mostly focused on the formation energy of oxygen Frenkel pairs (OFPs) and its correlation with the model proposed by Konings and Beneš. Besides an interatomic potential published in the open literature and developed in compliance with the experimental thermal expansion of PuO2, a second interatomic potential has been applied in calculations. This latter is featured by a lower formation energy of OFP. The contribution due to defects formation was calculated by means of a simplified theoretical model of heat capacity. Results of calculations in the very high-temperature domain showed an increase in the contribution due to OFP defects consistent with the model by Konings and Beneš. Predictions suggest the onset of a premelting transition around 85% of melting temperature without the presence of a peak of heat capacity. Major deviations from the recommended model have been noted in the intermediate temperature region where the effect of clustering of defects should play a significant role. Therefore, the value of formation energy of OFP proposed by Konings and Beneš could be interpreted as an effective value that accounts for the two processes (defects clustering and premelting transition) that could contribute, according to our results, to the heat capacity of plutonium dioxide at high temperature. This conclusion is consistent with the numerical evaluations of OFP formation energy that are in general higher than proposed by Konings and Beneš.

References

1.
Sengupta
,
A. K.
,
Khan
,
K. B.
,
Panakkal
,
J.
,
Kamath
,
H. S.
, and
Banerjee
,
S.
,
2009
, “
Evaluation of High Plutonia (44% PuO2) MOX as a Fuel for Fast Breeder Test Reactor
,”
J. Nucl. Mater.
,
385
(
1
), pp.
173
177
.10.1016/j.jnucmat.2008.09.041
2.
Kato
,
M.
, and
Matsumoto
,
T.
,
2015
, “
Thermal and Mechanical Properties of UO2 and PuO2
,”
Proceedings of the Third Information Exchange Meeting on Actinide and Fission Products Partitioning and Transmutation
, Seoul, Korea, Sept. 30, 2014–Oct. 2, 2014, Report No.
NEA/NSC/R(2015)2
.https://inis.iaea.org/search/search.aspx?orig_q=RN:47093736
3.
Balboa
,
H.
,
Van Brutzel
,
L.
,
Chartier
,
A.
, and
Le Bouar
,
Y.
,
2017
, “
Assessment of Empirical Potential for MOX Nuclear Fuels and Thermomechanical Properties
,”
J. Nucl. Mater.
,
495
, pp.
67
77
.10.1016/j.jnucmat.2017.07.067
4.
Fink
,
J. K.
,
1982
, “
Enthalpy and Heat Capacity of the Actinide Oxides
,”
Int. J. Thermophys.
,
3
(
2
), pp.
165
200
.10.1007/BF00503638
5.
Bonnerot
,
J.-M.
,
1988
, “
Proprietes Thermiques des Oxydes Mixtes d'Uranium et de Plutonium
,” Ph.D. thesis, CEA, Cadarache, France, Report No.
CEA-R-5450
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/007/20007826.pdf
6.
Harding
,
J. H.
,
Martin
,
D. G.
, and
Potter
,
P. E.
,
1989
, “
Thermophysical and Thermochemical Properties of Fast Reactor Materials
,” Commission of the European Communities, Report No. EUR-12402-EN.
7.
Popov
,
S. G.
,
Carbajo
,
J. J.
,
Ivanov
,
V. K.
, and
Yoder
,
G. L.
,
2000
, “
Thermophysical Properties of MOX and UO2 Fuels Including the Effects of Irradiation
,” Oak Ridge National Laboratory, Report No.
ORNL/TM-2000/351
.https://www-rsicc.ornl.gov/FMDP/tm2000-351.pdf
8.
Duriez
,
C.
,
Alessandri
,
J.-P.
,
Gervais
,
T.
, and
Philipponneau
,
Y.
,
2000
, “
Thermal Conductivity of Hypostoichiometric Low Pu Content (U,Pu)O2-x Mixed Oxide
,”
J. Nucl. Mater.
,
277
(
2–3
), pp.
143
158
.10.1016/S0022-3115(99)00205-6
9.
Siefken
,
L. J.
,
Coryell
,
E. W.
,
Harvego
,
E. A.
, and
Hohorst
,
J. K.
,
2001
, “
MATPRO—A Library of Materials Properties for Light-Water-Reactor Accident Analysis
,” NUREG/CR-6150, Vol. 4, Rev. 2, INEL-96/0422, Idaho National Engineering and Environmental Laboratories, Idaho Falls, ID.
10.
Konings
,
R. J. M.
, and
Beneš
,
O.
,
2013
, “
The Heat Capacity of NpO2 at High Temperatures: The Effect of Oxygen Frenkel Pair Formation
,”
J. Phys. Chem. Solids
,
74
(
5
), pp.
653
655
.10.1016/j.jpcs.2012.12.018
11.
Konings
,
R. J. M.
,
Beneš
,
O.
,
Kovács
,
A.
,
Manara
,
D.
,
Sedmidubský
,
D.
,
Gorokhov
,
L.
,
Iorish
,
V. S.
,
Yungman
,
V.
,
Shenyavskaya
,
E.
, and
Osina
,
E.
,
2014
, “
The Thermodynamic Properties of the f-Elements and Their Compounds. Part 2. The Lanthanide and Actinide Oxides
,”
J. Phys. Chem. Ref. Data
,
43
(
1
), p.
013101
.10.1063/1.4825256
12.
Uchida
,
T.
,
Sunaoshi
,
T.
,
Konashi
,
K.
, and
Kato
,
M.
,
2014
, “
Thermal Expansion of PuO2
,”
J. Nucl. Mater.
,
452
(
1–3
), pp.
281
284
.10.1016/j.jnucmat.2014.05.039
13.
Serizawa
,
H.
, and
Arai
,
Y.
,
2000
, “
An examination of the estimation method for the specific heat of TRU dioxides: Evaluation With PuO2
,”
J. Alloys Compd.
,
312
(
1–2
), pp.
257
264
.10.1016/S0925-8388(00)01089-6
14.
Kurosaki
,
K.
,
Yamada
,
K.
,
Uno
,
M.
,
Yamanaka
,
S.
,
Yamamoto
,
K.
, and
Namekawa
,
T.
,
2001
, “
Molecular Dynamics Study of Mixed Oxide Fuel
,”
J. Nucl. Mater.
,
294
(
1–2
), pp.
160
167
.10.1016/S0022-3115(01)00451-2
15.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
16.
ENEA,
2019
, “
High Performance Computing on CRESCO infrastructure: Research Activities and Results 2019
,”
ENEA
, Italian National Agency for New Technologies Energy and Sustainable Economic Development.https://www.pubblicazioni.enea.it/le-pubblicazioni-enea/edizioni-enea/anno-2020/highperformance-computing-on-cresco-infrastructure-research-activities-and-results-2019.html
17.
Ogard
,
A. E.
,
1970
, “
Plutonium 1970 and other actinides
,”
Proceedings of the 4th International Conference Plutonium and other Actinides
, Sante Fe, NM, Oct. 5–9, Vol.
1
, p.
78
.https://www.osti.gov/biblio/4064864
18.
Manes
,
L.
,
1970
, “
Plutonium 1970 and Other Actinides
,”
Proceedings of the 4th International Conference Plutonium and other Actinides
, Sante Fe, NM, Oct. 5–9, Vol.
1
, p.
254
.
19.
Wang
,
F.
,
Sun
,
B.
,
Liu
,
H.-F.
,
Lin
,
D.-Y.
, and
Song
,
H.-F.
,
2019
, “
Thermodynamics and Kinetics of Intrinsic Point Defects in Plutonium Dioxides
,”
J. Nucl. Mater.
,
526
, p.
151762
.10.1016/j.jnucmat.2019.151762
20.
Nakamura
,
H.
, and
Machida
,
M.
,
2018
, “
A First-Principles Study on Point Defects in Plutonium Dioxide
,”
Prog. Nucl. Sci. Technol.
,
5
, pp.
132
135
.10.15669/pnst.5.132
21.
Calabrese
,
R.
,
Manara
,
D.
,
Schubert
,
A.
,
van de Laar
,
J.
, and
van Uffelen
,
P.
,
2015
, “
Melting Temperature of MOX Fuel for FBR Applications: TRANSURANUS Modelling and Experimental Findings
,”
Nucl. Eng. Des.
,
283
, pp.
148
154
.10.1016/j.nucengdes.2014.06.024
22.
Kato
,
M.
,
Morimoto
,
K.
,
Sugata
,
H.
,
Konashi
,
K.
,
Kashimura
,
M.
, and
Abe
,
T.
,
2008
, “
Solidus and Liquidus Temperatures in the UO2–PuO2 System
,”
J. Nucl. Mater.
,
373
(
1–3
), pp.
237
245
.10.1016/j.jnucmat.2007.06.002
23.
Yamada
,
K.
,
Kurosaki
,
K.
,
Uno
,
M.
, and
Yamanaka
,
S.
,
2000
, “
Evaluation of Thermal Properties of Mixed Oxide Fuel by Molecular Dynamics
,”
J. Alloys Compd.
,
307
(
1–2
), pp.
1
9
.10.1016/S0925-8388(00)00805-7
24.
Terentyev
,
D.
,
2007
, “
Molecular Dynamics Study of Oxygen Transport and Thermal Properties of Mixed Oxide Fuels
,”
Comput. Mater. Sci.
,
40
(
3
), pp.
319
326
.10.1016/j.commatsci.2007.01.002
25.
Matsumoto
,
T.
,
Arima
,
T.
,
Inagaki
,
Y.
,
Idemitsu
,
K.
,
Kato
,
M.
, and
Uchida
,
T.
,
2015
, “
Molecular Dynamics Calculations of Heat Conduction in Actinide Oxides Under Thermal Gradient
,”
Prog. Nucl. Energy
,
85
, pp.
271
276
.10.1016/j.pnucene.2015.06.012
26.
Kruger
,
O. L.
, and
Savage
,
H.
,
1968
, “
Heat Capacity and Thermodynamic Properties of Plutonium Dioxide
,”
J. Chem. Phys.
,
49
(
10
), pp.
4540
4544
.10.1063/1.1669909
27.
Minamoto
,
S.
,
Kato
,
M.
,
Konashi
,
K.
, and
Kawazoe
,
Y.
,
2009
, “
Calculations of Thermodynamic Properties of PuO2 by the First-Principles and Lattice Vibration
,”
J. Nucl. Mater.
,
385
(
1
), pp.
18
20
.10.1016/j.jnucmat.2008.10.024
28.
Sobolev
,
V.
,
2005
, “
Modelling Thermal Properties of Actinide Dioxide Fuels
,”
J. Nucl. Mater.
,
344
(
1–3
), pp.
198
205
.10.1016/j.jnucmat.2005.04.042
29.
Hirooka
,
S.
, and
Kato
,
M.
,
2018
, “
Sound Speeds in and Mechanical Properties of (U,Pu)O2−x
,”
J. Nucl. Sci. Technol.
,
55
(
3
), pp.
356
362
.10.1080/00223131.2017.1397564
30.
Roof
,
R. B.
, Jr.
,
1960
, “
An Experimental Determination of the Characteristic Temperature for PuO2
,”
J. Nucl. Mater.
,
2
(
1
), pp.
39
42
.10.1016/0022-3115(60)90022-2
31.
Martin
,
D. G.
,
1988
, “
The Thermal Expansion of Solid UO2 and (U,Pu) Mixed Oxides—A Review and Recommendations
,”
J. Nucl. Mater.
,
152
(
2–3
), pp.
94
101
.10.1016/0022-3115(88)90315-7
32.
Kato
,
M.
,
Ikusawa
,
Y.
,
Sunaoshi
,
T.
,
Nelson
,
A. T.
, and
McClellan
,
K. J.
,
2016
, “
Thermal Expansion Measurement of (U,Pu)O2-x in Oxygen Partial Pressure-Controlled Atmosphere
,”
J. Nucl. Mater.
,
469
, pp.
223
227
.10.1016/j.jnucmat.2015.11.048
33.
Fink
,
J. K.
,
2000
, “
Thermophysical Properties of Uranium Dioxide
,”
J. Nucl. Mater.
,
279
(
1
), pp.
1
18
.10.1016/S0022-3115(99)00273-1
34.
LAMMPS, 2015, “LAMMPS Software Package,” accessed June 15, 2022, https://github.com/lammps/lammps/tree/master/examples/ELASTIC
35.
Ganchenkova, M., and Nieminen, R.M., 2015, “Mechanical Properties of Silicon Microstructures,” in Handbook of Silicon Based MEMS Materials and Technologies (Second Edition), accessed June 15, 2022, https://www.sciencedirect.com/topics/chemistry/elasticity-constant
36.
Li
,
S.
,
Ahuja
,
R.
, and
Johansson
,
B.
,
2002
, “
High Pressure Theoretical Studies of Actinide Oxides
,”
High Pressure Res.
,
22
(
2
), pp.
471
474
.10.1080/08957950212818
37.
Idiri
,
M.
,
Le Bihan
,
T.
,
Heathman
,
S.
, and
Rebizant
,
J.
,
2004
, “
Behavior of Actinide Oxides Under Pressure: UO2 and ThO2
,”
Phys. Rev. B
,
70
(
1
), p.
014113
.10.1103/PhysRevB.70.014113
38.
Martin
,
D. G.
,
1989
, “
The Elastic Constants of Polycrystalline UO2 and (U,Pu) Mixed Oxides: A Review and Recommendations
,”
High Temp.—High Pressure
,
21
, pp.
13
24
.https://www.researchgate.net/publication/282300519_Elastic_constants_of_polycrystalline_UO2_and_U_Pu_mixed_oxides_a_review_and_recommendations
39.
Lu
,
Y.
,
Yang
,
Y.
, and
Zhang
,
P.
,
2015
, “
Charge States of Point Defects in Plutonium Oxide: A First-Principles Study
,”
J. Alloys Compd.
,
649
, pp.
544
552
.10.1016/j.jallcom.2015.07.219
40.
Tiwary
,
P.
,
van de Walle
,
A.
,
Jeon
,
B.
, and
Grønbech-Jensen
,
N.
,
2011
, “
Interatomic Potentials for Mixed Oxide and Advanced Nuclear Fuels
,”
Phys. Rev. B
,
83
(
9
), p.
094104
.10.1103/PhysRevB.83.094104
41.
Tian
,
X.
,
Gao
,
T.
,
Lu
,
C.
,
Shang
,
J.
, and
Xiao
,
H.
,
2013
, “
First Principle Study of the Behavior of Helium in Plutonium Dioxide
,”
Eur. Phys. J. B
,
86
(
4
), p.
179
.10.1140/epjb/e2013-31047-y
42.
Freyss
,
M.
,
Vergnet
,
N.
, and
Petit
,
T.
,
2006
, “
Ab Initio Modeling of the Behavior of Helium and Xenon in Actinide Dioxide Nuclear Fuels
,”
J. Nucl. Mater.
,
352
(
1–3
), pp.
144
150
.10.1016/j.jnucmat.2006.02.048
43.
Murphy
,
S. T.
, and
Hine
,
N. D. M.
,
2013
, “
Anisotropic Charge Screening and Supercell Size Convergence of Defect Formation Energies
,”
Phys. Rev. B
,
87
(
9
), p.
094111
.10.1103/PhysRevB.87.094111
44.
Vălu
,
S. O.
,
Beneš
,
O.
,
Manara
,
D.
,
Konings
,
R. J. M.
,
Cooper
,
M. W. D.
,
Grimes
,
R. W.
, and
Guéneau
,
C.
,
2017
, “
The High-Temperature Heat Capacity of the (Th,U)O2 and (U,Pu)O2 Solid Solutions
,”
J. Nucl. Mater.
,
484
, pp.
1
6
.10.1016/j.jnucmat.2016.11.010
45.
Oetting
,
F. L.
,
1982
, “
The Chemical Thermodynamics of Nuclear Materials. VII. The High-Temperature Enthalpy of Plutonium Dioxide
,”
J. Nucl. Mater.
,
105
(
2–3
), pp.
257
261
.10.1016/0022-3115(82)90382-8
46.
Cooper
,
M. W. D.
,
Rushton
,
M. J. D.
, and
Grimes
,
R. W.
,
2014
, “
A Many-Body Potential Approach to Modelling the Thermomechanical Properties of Actinide Oxides
,”
J. Phys.: Condens. Matter
,
26
(
10
), pp.
105401
105411
.10.1088/0953-8984/26/10/105401
47.
Cooper
,
M. W. D.
,
Middleburgh
,
S. C.
, and
Grimes
,
R. W.
,
2015
, “
Modelling the Thermal Conductivity of (UxTh1-x)O2 and (UxPu1-x)O2
,”
J. Nucl. Mater.
,
466
, pp.
29
35
.10.1016/j.jnucmat.2015.07.022
48.
Cooper
,
M. W. D.
,
Murphy
,
S. T.
,
Rushton
,
M. J. D.
, and
Grimes
,
R. W.
,
2015
, “
Thermophysical Properties and Oxygen Transport in the (UxPu1−x)O2 Lattice
,”
J. Nucl. Mater.
,
461
, pp.
206
214
.10.1016/j.jnucmat.2015.03.024
49.
Böhler
,
R.
,
Welland
,
M. J.
,
Prieur
,
D.
,
Cakir
,
P.
,
Vitova
,
T.
,
Pruessmann
,
T.
,
Pidchenko
,
I.
,
Hennig
,
C.
,
Guéneau
,
C.
,
Konings
,
R. J. M.
, and
Manara
,
D.
,
2014
, “
Recent Advances in the Study of the UO2–PuO2 Phase Diagram at High Temperatures
,”
J. Nucl. Mater.
,
448
(
1–3
), pp.
330
339
.10.1016/j.jnucmat.2014.02.029
You do not currently have access to this content.