Abstract

A new design of a small power accelerator-driven system (ADS) using inert matrix fuel—ceramic–ceramic matrix (CERCER) and ceramic-metallic matrix (CERMET) was proposed in our previous work for high transmutation rate, small reactivity loss due to burnup, and enhanced safety features. The fast neutron spectrum in the ADS showed a benefit for reducing minor actinides inventories in the fuel cycle. However, the reliability of the nuclear cross section data of evaluated libraries, especially at high energy, needs to be investigated and its impact on CERCER and CERMET fueled ADS calculation results needs to be assessed. In this study, the impact of endf/b-vii.1 nuclear library uncertainty on the CERCER and CERMET fueled ADS reactivity calculation are evaluated using the Monte Carlo method (scale6.2 and whisper-1.1). The sensitivity coefficients and uncertainty obtained by the two codes show a good agreement. The results reveal the uncertainty of the endf/b-vii.1 nuclear data caused significant uncertainty in the reactivity calculations (about 1000 pcm) and it is particularly higher in the CERMET fueled core due to a harder neutron spectrum. The paper identifies the major contributes—isotopes and related cross sections—to the core reactivity uncertainty by suggesting the enhancement of these nuclear data.

References

1.
Vu
,
T. M.
,
Hartanto
,
D.
, and
Pham
,
N. V. H.
,
2021
, “
Neutronics Study on Small Power ADS Loaded With Recycled Inert Matrix Fuel for Transuranic Elements Transmutation Using Serpent Code
,”
Nucl. Eng. Technol.
,
53
(
7
), pp.
2095
2103
.10.1016/j.net.2021.01.004
2.
Vu
,
T. M.
, and
Kitada
,
T.
,
2015
, “
Seed and Blanket ADS Using Thorium—Reprocessed Fuel: Parametric Survey on TRU Transmutation Performance and Safety Characteristics
,”
Ann. Nucl. Energy
,
78
, pp.
176
179
.10.1016/j.anucene.2014.12.018
3.
Leppanen
,
J.
,
Pusa
,
M.
,
Viitanen
,
T.
,
Valtavirta
,
V.
, and
Kaltiaisenaho
,
T.
,
2015
, “
The Serpent Monte Carlo Code: Status, Development and Applications in 2013
,”
Ann. Nucl. Energy
,
82
, pp.
142
150
.10.1016/j.anucene.2014.08.024
4.
Castelluccio
,
D. M.
,
Grasso
,
G.
,
Lodi
,
F.
,
Peluso
,
V. G.
, and
Mengoni
,
A.
,
2021
, “
Nuclear Data Target Accuracy Requirements for Advanced Reactors: The ALFRED Case
,”
Ann. Nucl. Energy
,
162
, p.
108533
.10.1016/j.anucene.2021.108533
5.
Romojaro
,
P.
,
Álvarez-Velarde
,
F.
,
Cabellos
,
O.
,
García-Herranz
,
N.
, and
Jiménez-Carrascosa
,
A.
,
2021
, “
On the Importance of Target Accuracy Assessments and Data Assimilation for the Co-Development of Nuclear Data and Fast Reactors: MYRRHA and ESFR
,”
Ann. Nucl. Energy
,
161
, p.
108416
.10.1016/j.anucene.2021.108416
6.
Palmiotti
,
G.
, and
Salvatores
,
M.
, “
Nuclear Data Target Accuracy Requirements for MA Burners
,”
Trans. Am. Nucl. Soc.
,
104
, pp.
681
685
.https://inldigitallibrary.inl.gov/sites/sti/sti/5094569.pdf
7.
NEA
,
2008
, “Uncertainty And Target Accuracy Assessment For Innovative Systems Using Recent Covariance Data Evaluations, International Evaluation Co-Operation,” Vol.
26
, NEA/WPEC-26, OECD/NEA, Paris, France, p. 465, Report No. NEA No. 6410, accessed Mar. 6, 2022, https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/volume26.pdf
8.
Rearden
,
B. T.
,
Williams
,
M. L.
,
Jessee
,
M. A.
,
Mueller
,
D. E.
, and
Wiarda
,
D. A.
,
2011
, “
Sensitivity and Uncertainty Analysis Capabilities and Data in SCALE
,”
Nucl. Technol.
,
174
(
2
), pp.
236
288
.10.13182/NT174-236
9.
Brown
,
F. B.
,
Rising
,
M. E.
, and
Alwin
,
J. L.
,
2017
, “User Manual for Whisper-1.1,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-17-20453, p. 15, accessed Mar. 18, 2022, https://mcnp.lanl.gov/pdf_files/la-ur-17-20567.pdf
10.
Chadwick
,
M. B.
,
Herman
,
M.
,
Obložinský
,
P.
,
Dunn
,
M. E.
,
Danon
,
Y.
,
Kahler
,
A. C.
,
Smith
,
D. L.
,
Pritychenko
,
B.
,
Arbanas
,
G.
,
Arcilla
,
R.
,
Brewer
,
R.
,
Brown
,
D. A.
,
Capote
,
R.
,
Carlson
,
A. D.
,
Cho
,
Y. S.
,
Derrien
,
H.
,
Guber
,
K.
,
Hale
,
G. M.
,
Hoblit
,
S.
,
Holloway
,
S.
,
Johnson
,
T. D.
,
Kawano
,
T.
,
Kiedrowski
,
B. C.
,
Kim
,
H.
,
Kunieda
,
S.
,
Larson
,
N. M.
,
Leal
,
L.
,
Lestone
,
J. P.
,
Little
,
R. C.
,
McCutchan
,
E. A.
,
MacFarlane
,
R. E.
,
MacInnes
,
M.
,
Mattoon
,
C. M.
,
McKnight
,
R. D.
,
Mughabghab
,
S. F.
,
Nobre
,
G. P. A.
,
Palmiotti
,
G.
,
Palumbo
,
A.
,
Pigni
,
M. T.
,
Pronyaev
,
V. G.
,
Sayer
,
R. O.
,
Sonzogni
,
A. A.
,
Summers
,
N. C.
,
Talou
,
P.
,
Thompson
,
I. J.
,
Trkov
,
A.
,
Vogt
,
R. L.
,
van der Marck
,
S. C.
,
Wallner
,
A.
,
White
,
M. C.
,
Wiarda
,
D.
, and
Young
,
P. G.
,
2011
, “
ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data
,”
Nucl. Data Sheets
,
112
(
12
), pp.
2887
2996
.10.1016/j.nds.2011.11.002
11.
Rearden
,
B.
, and
Jesse
,
M.
,
2016
, “SCALE Code System,” Oak Ridge National Laboratory, Oak Ridge, TN, p. 2712, accessed Mar. 6, 2022, https://info.ornl.gov/sites/publications/files/Pub68918.pdf
12.
Werner
,
C. J.
,
2017
, “MCNP User's Manual Code Version 6.2,” Los Alamos National Lab, Los Alamos, NM, Report No. LA-UR-17-29981, p. 746, accessed, from: https://mcnp.lanl.gov/pdf_files/la-ur-17-29981.pdf
13.
Liem
,
P. H.
,
Zuhair
., and
Hartanto
,
D.
,
2019
, “
Sensitivity and Uncertainty Analysis on the First Core Criticality of the RSG GAS Multipurpose Research Reactor
,”
Prog. Nucl. Energy
,
114
, pp.
46
60
.10.1016/j.pnucene.2019.03.001
14.
Hartanto
,
D.
, and
Liem
,
P. H.
,
2021
, “
Sensitivity and Uncertainty Analysis of a High Temperature Gas-Cooled Reactor by Using a 44-Group Covariance Library
,”
Ann. Nucl. Energy
,
151
, p.
107943
.10.1016/j.anucene.2020.107943
You do not currently have access to this content.