Applicability of extreme-value theory in predicting the maximum crest amplitude in runs of ocean waves is demonstrated using data from extensive computer simulations of random linear waves. Extension of the theory to include wave crests in heavy seas is also made within the context of Stokes nonlinearities. Results are confirmed with scaled laboratory measurements. [S0892-7219(00)00803-7]

1.
Ochi, M. K., 1998, Ocean Waves—The Stochastic Approach, Cambridge University Press, Cambridge, U.K., pp. 149–159.
2.
Tayfun
,
M. A.
,
1980
, “
Narrow-band Nonlinear Sea Waves
,”
J. Geophys. Res.
,
85
, pp.
1548
1552
.
3.
Kriebel
,
D. L.
, and
Dawson
,
T. H.
,
1991
, “
Nonlinear Effects on Wave Groups in Random Seas
,”
ASME J. Offshore Mech. Arct. Eng.
,
113
, pp.
142
147
.
4.
Kimura, A., 1980, “Statistical Properties of Random Wave Groups,” Proceedings, 17th International Conference on Coastal Engineering, Vol. 3, pp. 2955–2973.
5.
Dawson
,
T. H.
,
Kriebel
,
D. L.
, and
Wallendorf
,
L. A.
,
1996
, “
Markov Description of Wave-Crest Statistics
,”
ASME J. Offshore Mech. Arct. Eng.
,
118
, pp.
37
45
.
6.
Longuet-Higgins
,
M. L.
,
1952
, “
The Statistical Distribution of the Heights of Sea Waves
,”
J. Mar. Res.
,
11
, pp.
245
266
.
7.
Dawson
,
T. H.
,
Kriebel
,
D. L.
, and
Wallendorf
,
L. A.
,
1993
, “
Breaking Waves in Laboratory Generated Jonswap Seas
,”
Appl. Ocean Res.
,
15
, pp.
85
93
.
You do not currently have access to this content.