The question of optimal operation of wave-energy converters has been a key issue since modern research on the topic emerged in the early 1970s, and criteria for maximum wave-energy absorption soon emerged from frequency domain analysis. However, constraints on motions and forces give the need for time-domain modeling, where numerical optimization must be used to exploit the full absorption potential of an installed converter. A heaving, semisubmerged sphere is used to study optimal constrained motion of wave-energy converters. Based on a linear model of the wave-body interactions, a procedure for the optimization of the machinery force is developed and demonstrated. Moreover, a model-predictive controller is defined and tested for irregular sea. It repeatedly solves the optimization problem online in order to compute the optimal constrained machinery force on a receding horizon. The wave excitation force is predicted by use of an augmented Kalman filter based on a damped harmonic oscillator model of the wave process. It is shown how constraints influence the optimal motion of the heaving wave-energy converter, and also how close it is possible to approach previously published theoretical upper bounds. The model-predictive controller is found to perform close to optimum in irregular waves, depending on the quality of the wave force predictions. An absorbed power equal to or larger than 90% of the ideal constrained optimum is achieved for a chosen range of realistic sea states. Under certain circumstances, the optimal wave-energy absorption may be better in irregular waves than for a corresponding regular wave having the same energy period and wave-power level. An argument is presented to explain this observation.

1.
Evans
,
D. V.
, 1981, “
Power From Water Waves
,”
Annu. Rev. Fluid Mech.
0066-4189,
13
, pp.
157
187
.
2.
Falnes
,
J.
, 2007, “
A Review of Wave-Energy Extraction
,”
Mar. Struct.
0951-8339,
20
(
4
), pp.
185
201
.
3.
Salter
,
S. H.
, 1979, “
Power Conversion Systems for Ducks
,”
Proceedings of International Conference on Future Energy Concepts
,
Institution of Electrical Engineers
,
London
, Publication No. 171, pp.
100
108
.
4.
Nebel
,
P.
, 1992, “
Maximizing the Efficiency of Wave-Energy Plants Using Complex-Conjugate Control
,”
Proc. Inst. Mech. Eng., Part I: J. of Systems and Control Engineering
0959-6518,
206
(
4
), pp.
225
236
.
5.
Salter
,
S. H.
,
Jeffery
,
D. C.
, and
Taylor
,
J. R. M.
, 1976, “
The Architecture of Nodding Duck Wave Power Generators
,”
The Naval Architect
0306-0209, Issue 1, pp.
21
24
.
6.
Falnes
,
J.
, 1995, “
On Non-Causal Impulse Response Functions Related to Propagating Water Waves
,”
Appl. Ocean Res.
0141-1187,
17
(
6
), pp.
379
389
.
7.
Perdigão
,
J. N. B. A.
, and
Sarmento
,
A. J. N. A.
, 1989, “
A Phase Control Strategy for OWC Devices in Irregular Seas
,”
The Fourth International Workshop on Water Waves and Floating Bodies
,
J.
Grue
, ed., Department of Mathematics, University of Oslo, pp.
205
209
.
8.
Beirão
,
P. J. B. F. N.
, 2007, “
Modelling and Control of a Wave Energy Converter: Archimedes Wave Swing
,” Ph.D. thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal.
9.
Valério
,
D.
,
Beirão
,
P.
, and
Sá da Costa
,
J.
, 2007, “
Reactive Control and Phase and Amplitude Control Applied to the Archimedes Wave Swing
,”
Proceedings of the 16th (2007) International Offshore and Polar Engineering Conference
, Lisbon, Portugal.
10.
Schoen
,
M. P.
,
Hals
,
J.
, and
Moan
,
T.
, 2008, “
Wave Prediction and Fuzzy Logic Control of Wave Energy Converters in Irregular Waves
,”
Proceedings of the 16th Mediterranean Conference on Control and Automation
, Ajaccio, France.
11.
Schoen
,
M. P.
,
Hals
,
J.
, and
Moan
,
T.
, 2008, “
Robust Control of Heaving Wave Energy Devices in Irregular Waves
,”
Proceedings of the 16th Mediterranean Conference on Control and Automation
, Ajaccio, France.
12.
Falnes
,
J.
, and
Budal
,
K.
, 1978, “
Wave-Power Conversion by Point Absorbers
,”
Norw. Marit. Res.
0304-1743,
6
(
4
), pp.
2
11
.
13.
Babarit
,
A.
, 2005, “
Optimisation hydrodynamique et contrôle optimal d’un récupérateur de l’énergie des vagues
,” Ph.D. thesis, Ecole Centrale de Nantes, France.
14.
Falcão
,
A. F. O.
, 2007, “
Phase Control Through Load Control of Oscillating-Body Wave Energy Converters With Hydraulic PTO System
,”
Proceedings of the Seventh European Wave and Tidal Energy Conference
, Porto, Portugal.
15.
Lopes
,
M.
,
Hals
,
J.
,
Gomes
,
R.
,
Moan
,
T.
,
Gato
,
L.
, and
de O. Falcão
,
A.
, 2009, “
Experimental and Numerical Investigation of Non-Predictive Phase Control Strategies for a Point-Absorbing Wave Energy Converter
,”
Ocean Eng.
0029-8018,
36
(
5
), pp.
386
402
.
16.
Evans
,
D. V.
, 1981, “
Maximum Wave-Power Absorption Under Motion Constraints
,”
Appl. Ocean Res.
0141-1187,
3
(
4
), pp.
200
203
.
17.
Pizer
,
D.
, 1993, “
Maximum Wave-Power Absorption of Point-Absorbers Under Motion Constraints
,”
Appl. Ocean Res.
0141-1187,
15
(
4
), pp.
227
234
.
18.
Falnes
,
J.
, 2000, “
Maximum Wave-Energy Absorption by Oscillating Systems Consisting of Bodies and Water Columns With Restricted or Unrestricted Amplitudes
,”
Proceedings of the International Offshore and Polar Engineering Conference
, Vol.
1
, pp.
420
426
.
19.
Backer
,
G. D.
,
Vantorre
,
M.
,
Banasiak
,
R.
,
Rouck
,
J. D.
,
Beels
,
C.
, and
Verhaeghe
,
H.
, 2007, “
Performance of a Point Absorber Heaving With Respect to a Floating Platform
,”
Proceedings of the Seventh European Wave and Tidal Energy Conference
, Porto, Portugal.
20.
Eidsmoen
,
H.
, 1995, “
Optimum Control of a Floating Wave Energy Converter With Restricted Amplitude
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
1
, pp.
139
146
.
21.
Nocedal
,
J.
, and
Wright
,
S. J.
, 1999,
Numerical Optimization
,
Springer-Verlag
,
New York
.
22.
Rossiter
,
J. A.
, 2004,
Model-Based Predictive Control
,
CRC
,
Boca Raton, FL
.
23.
Qin
,
S. J.
, and
Badgewell
,
T. A.
, 2000, “
An Overview of Nonlinear Model Predictive Control Applications
,”
Nonlinear Model Predictive Control
,
F.
Allgower
and
A.
Zheng
, eds.,
Birkhauser
,
Basel
, pp.
369
392
.
24.
Gieske
,
P.
, 2007, “
Model Predictive Control of a Wave Energy Converter: Archimedes Wave Swing
,” MS thesis, Delft University of Technology, Delft, The Netherlands.
25.
Price
,
A. A. E.
,
Forehand
,
D. I. M.
, and
Wallace
,
A. R.
, 2009, “
Time-Span of Future Information Necessary for Theoretical Acausal Optimal Control of Wave Energy Converters
,”
Proceedings of the European Control Conference
, pp.
3761
3766
.
26.
Budal
,
K.
,
Falnes
,
J.
,
Iversen
,
L. C.
,
Lillebekken
,
P. M.
,
Oltedal
,
G.
,
Hals
,
T.
,
Onshus
,
T.
, and
Høy
,
A. S.
, 1982, “
The Norwegian Wave-Power Buoy Project
,”
Proceedings of the Second International Symposium on Wave Energy Utilization
,
H.
Berge
, ed.,
Tapir
,
Trondheim
, pp.
323
344
.
27.
Hals
,
J.
,
Bjarte-Larsson
,
T.
, and
Falnes
,
J.
, 2002, “
Optimum Reactive Control and Control by Latching of a Wave-Absorbing Semisubmerged Heaving Sphere
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
4
, pp.
415
423
.
28.
WAMIT Inc.
, 2006, WAMIT User Manual, http://www.wamit.comhttp://www.wamit.com, version 6.3.
29.
Newman
,
J. N.
, 1977,
Marine Hydrodynamics
,
MIT
,
Cambridge, MA
.
30.
Havelock
,
T.
, 1955, “
Waves Due to a Floating Sphere Making Periodic Heaving Oscillations
,”
Proc. R. Soc. London, Ser. A
0950-1207,
231
, pp.
1
7
.
31.
Hulme
,
A.
, 1982, “
The Wave Forces Acting on a Floating Hemisphere Undergoing Forced Periodic Oscillations
,”
J. Fluid Mech.
0022-1120,
121
, pp.
443
463
.
32.
Jefferys
,
E. R.
, 1984, “
Simulation of Wave Power Devices
,”
Appl. Ocean Res.
0141-1187,
6
(
1
), pp.
31
39
.
33.
Taghipour
,
R.
,
Perez
,
T.
, and
Moan
,
T.
, 2008, “
Hybrid Frequency-Time Domain Models for Dynamic Response Analysis of Marine Structures
,”
Ocean Eng.
0029-8018,
35
(
7
), pp.
685
705
.
34.
Falnes
,
J.
, 2002,
Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
,
Cambridge University Press
,
Cambridge
.
35.
Chen
,
C. -T.
, 1999,
Linear System Theory and Design
,
Oxford University Press
,
New York
.
36.
Naidu
,
D. S.
, 2003,
Optimal Control Systems
,
CRC
,
Boca Raton, FL
.
37.
Budal
,
K.
and
Falnes
,
J.
, 1975, “
A Resonant Point Absorber of Ocean Waves
,”
Nature (London)
0028-0836,
256
, pp.
478
479
.
38.
Evans
,
D. V.
, 1976, “
A Theory for Wave-Power Absorption by Oscillating Bodies
,”
J. Fluid Mech.
0022-1120,
77
, pp.
1
25
.
39.
Newman
,
J. N.
, 1976, “
The Interaction of Stationary Vessels With Regular Waves
,”
Proceedings of the 11th Symposium on Naval Hydrodynamics
, London, pp.
491
501
.
40.
Budal
,
K.
, and
Falnes
,
J.
, 1977, “
Optimum Operation of Improved Wave-Power Converter
,”
Marine Science Communications
,
3
(
2
), pp.
133
150
.
41.
Budal
,
K.
, and
Falnes
,
J.
, 1980, “
Interacting Point Absorbers With Controlled Motion
,”
Power From Sea Waves
,
B.
Count
, ed.,
Academic
,
London
, pp.
381
399
.
42.
Falnes
,
J.
, 1994, “
Small Is Beautiful: How to Make Wave Energy Economic
,”
1993 European Wave Energy Symposium
, Edinburgh, Scotland, pp.
367
372
.
43.
Sørensen
,
A. J.
, 2005, “
Structural Issues in the Design and Operation of Marine Control Systems
,”
Annu. Rev. Control
1367-5788,
29
(
1
), pp.
125
149
.
44.
The Mathworks Inc.
, 2006, MATLAB, version 7.2, http://www.mathworks.com/http://www.mathworks.com/
45.
Michel
,
W. H.
, 1999, “
Sea Spectra Revisited
,”
Marine Technology
0025-3316,
36
(
4
), pp.
211
227
.
46.
Brown
,
R. G.
, and
Hwang
,
P. Y. C.
, 1997,
Introduction to Random Signals and Applied Kalman Filtering
, 3rd ed.,
Wiley
,
New York
.
47.
Budal
,
K.
,
Falnes
,
J.
,
Hals
,
T.
,
Iversen
,
L. C.
, and
Onshus
,
T.
, 1981, “
Model Experiment With a Phase Controlled Point Absorber
,”
Proceedings of the Second International Symposium on Wave and Tidal Energy
,
H. S.
Stephens
and
C. A.
Stapleton
, eds.,
BHRA Fluid Engineering
,
Cambridge, UK
, pp.
191
206
.
You do not currently have access to this content.