The characteristics of extreme waves in hurricane dominated regions vary systematically with a number of covariates, including location and storm direction. Reliable estimation of design criteria requires incorporation of covariate effects within extreme value models. We present a spatiodirectional model for extreme waves in the Gulf of Mexico motivated by the nonhomogeneous Poisson model for peaks over threshold. The model is applied to storm peak significant wave height HS for arbitrary geographic areas from the proprietary Gulf of Mexico Oceanographic Study (GOMOS) hindcast for the US region of the Gulf of Mexico for the period of 1900–2005. At each location, directional variability is modeled using a nonparametric directional location and scale; data are standardized (or “whitened”) with respect to local directional location and scale to remove directional effects. For a suitable choice of threshold, the rate of occurrence of threshold exceedences of whitened storm peak HS with direction per location is modeled as a Poisson process. The size of threshold exceedences is modeled using a generalized Pareto form, the parameters of which vary smoothly in space, and are estimated within a roughness-penalized likelihood framework using natural thin plate spline forms in two spatial dimensions. By reparameterizing the generalized Pareto model in terms of asymptotically independent parameters, an efficient back-fitting algorithm to estimate the natural thin plate spline model is achieved. The algorithm is motivated in an appendix. Design criteria, estimated by simulation, are illustrated for a typical neighborhood of 17×17 grid locations. Applications to large areas consisting of more than 2500 grid locations are outlined.

1.
Jonathan
,
P.
,
Ewans
,
K. C.
, and
Forristall
,
G. Z.
, 2008, “
Statistical Estimation of Extreme Ocean Environments: The Requirement for Modeling Directionality and Other Covariate Effects
,”
Ocean Eng.
0029-8018,
35
, pp.
1211
1225
.
2.
Jonathan
,
P.
, and
Ewans
,
K. C.
, 2007, “
The Effect of Directionality on Extreme Wave Design Criteria
,”
Ocean Eng.
0029-8018,
34
, pp.
1977
1994
.
3.
Jonathan
,
P.
, and
Ewans
,
K. C.
, 2008, “
On Modelling Seasonality of Extreme Waves
,”
Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering
, Estoril, Portugal, Jun. 4–8.
4.
Anderson
,
C. W.
,
Carter
,
D. J. T.
, and
Cotton
,
P. D.
, 2001, “
Wave Climate Variability and Impact on Offshore Design Extremes
,” Report Commissioned From the University of Sheffield and Satellite Observing Systems for Shell International.
5.
Davison
,
A. C.
, and
Smith
,
R. L.
, 1990, “
Models for Exceedances Over High Thresholds
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
1369-7412,
52
, pp.
393
442
.
6.
Robinson
,
M. E.
, and
Tawn
,
J. A.
, 1997, “
Statistics for Extreme Sea Currents
,”
Appl. Stat.
0285-0370,
46
, pp.
183
205
.
7.
Chavez-Demoulin
,
V.
, and
Davison
,
A. C.
, 2005, “
Generalized Additive Modelling of Sample Extremes
,”
J. R. Stat. Soc., Ser. C., Appl. Stat.
,
54
, pp.
207
222
.
8.
Coles
,
S.
, 2001,
An Introduction to Statistical Modelling of Extreme Values
,
Springer
,
New York
.
9.
Scotto
,
M. G.
, and
Guedes-Soares
,
C.
, 2000, “
Modelling the Long-Term Time Series of Significant Wave Height With Non-Linear Threshold Models
,”
Coastal Eng.
0378-3839,
40
, pp.
313
327
.
10.
Coles
,
S. G.
, and
Powell
,
E. A.
, 1996, “
Bayesian Methods in Extreme Value Modelling: A Review and New Developments
,”
Int. Statist. Rev.
0306-7734,
64
, pp.
119
136
.
11.
Scotto
,
M. G.
, and
Guedes-Soares
,
C.
, 2007, “
Bayesian Inference for Long-Term Prediction of Significant Wave Height
,”
Coastal Eng.
0378-3839,
54
, pp.
393
400
.
12.
Coles
,
S. G.
, and
Casson
,
E.
, 1998, “
Extreme Value Modelling of Hurricane Wind Speeds
,”
Struct. Safety
0167-4730,
20
, pp.
283
296
.
13.
Casson
,
E.
, and
Coles
,
S. G.
, 1999, “
Spatial Regression Models for Extremes
,”
Extremes
,
1
, pp.
449
468
.
14.
Coles
,
S. G.
, and
Tawn
,
J. A.
, 1996, “
A Bayesian Analysis of Extreme Rainfall Data
,”
Appl. Stat.
0285-0370,
45
, pp.
463
478
.
15.
Coles
,
S. G.
, and
Tawn
,
J. A.
, 2005, “
Bayesian Modelling of Extreme Sea Surges on the UK East Coast
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
363
, pp.
1387
1406
.
16.
Ledford
,
A. W.
, and
Tawn
,
J. A.
, 1997, “
Modelling Dependence Within Joint Tail Regions
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
1369-7412,
59
, pp.
475
499
.
17.
Heffernan
,
J. E.
, and
Tawn
,
J. A.
, 2004, “
A Conditional Approach for Multivariate Extreme Values
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
1369-7412,
66
, pp.
497
546
.
18.
Guedes-Soares
,
C.
, and
Scotto
,
M.
, 2001, “
Modelling Uncertainty in Long-Term Predictions of Significant Wave Height
,”
Ocean Eng.
0029-8018,
28
, pp.
329
342
.
19.
Eastoe
,
E. F.
, 2007, “
Statistical Models for Dependent and Non-Stationary Extreme Events
,” Ph.D. thesis, University of Lancaster, UK.
20.
Eastoe
,
E. F.
, and
Tawn
,
J. A.
, 2009, “
Modelling Non-Stationary Extremes With Application to Surface Level Ozone
,”
Appl. Stat.
0285-0370,
58
, pp.
22
45
.
21.
Haring
,
R. R.
, and
Heideman
,
J. C.
, 1978, “
Gulf of Mexico Rare Wave Return Periods
,”
Offshore Technology Conference
, Paper No. OTC3229.
22.
Ward
,
E. G.
,
Borgman
,
L. E.
, and
Cardone
,
V. J.
, 1978,
Statistics of Hurricane Waves in the Gulf of Mexico
,”
Offshore Technology Conference
.
23.
Chouinard
,
L. E.
,
Liu
,
C.
, and
Cooper
,
C. K.
, 1997, “
Model for Severity of Hurricanes in Gulf of Mexico
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
123
(
3
), pp.
120
129
.
24.
API
, 2007, “
Interim Guidance on Hurricane Conditions for the Gulf of Mexico
,” API Bulletin.
25.
Oceanweather, Inc.
, 2005, GOMOS Gulf of Mexico Hindcast.
26.
Chouinard
,
L. E.
, 1992, “
A Statistical Method for Regional Design Wave Heights in the Gulf of Mexico
,”
Offshore Technology Conference
, Paper No. OTC 6832.
27.
Dixon
,
J. M.
,
Tawn
,
J. A.
, and
Vassie
,
J. M.
, 1998, “
Spatial Modelling of Extreme Sea-Levels
,”
Environmetrics
1180-4009,
9
, pp.
283
301
.
28.
Ewans
,
K. C.
, and
Jonathan
,
P.
, 2008, “
The Effect of Directionality on Northern North Sea Extreme Wave Design Criteria
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
130
, p.
041604
.
29.
Green
,
P. J.
, and
Silverman
,
B. W.
, 1994,
Nonparametric Regression and Generalised Linear Models: A Roughness Penalty Approach
,
Chapman and Hall
,
London, UK
.
30.
Davison
,
A. C.
, and
Gholamrezaee
,
M. M.
, 2009, “
Geostatistics of Extremes
,” in press.
31.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
, 2001,
The Elements of Statistical Learning. Data Mining, Inference and Prediction
,
Springer
,
New York
.
32.
Davison
,
A. C.
, 2003,
Statistical Models
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.