Statistics of storm peaks over threshold depend typically on a number of covariates including location, season, and storm direction. Here, a nonhomogeneous Poisson model is adopted to characterize storm peak events with respect to season for two Gulf of Mexico locations. The behavior of storm peak significant wave height over threshold is characterized using a generalized Pareto model, the parameters of which vary smoothly with season using a Fourier form. The rate of occurrence of storm peaks is also modeled using a Poisson model with rate varying with season. A seasonally varying extreme value threshold is estimated independently. The degree of smoothness of extreme value shape and scale and the Poisson rate with season are regulated by roughness-penalized maximum likelihood; the optimal value of roughness is selected by cross validation. Despite the fact that only the peak significant wave height event for each storm is used for modeling, the influence of the whole period of a storm on design extremes for any seasonal interval is modeled using the concept of storm dissipation, providing a consistent means to estimate design criteria for arbitrary seasonal intervals. The characteristics of the 100 year storm peak significant wave height, estimated using the seasonal model, are examined and compared with those estimated ignoring seasonality.

1.
Jonathan
,
P.
, and
Ewans
,
K. C.
, 2007, “
The Effect of Directionality on Extreme Wave Design Criteria
,”
Ocean Eng.
0029-8018,
34
, pp.
1977
1994
.
2.
Ewans
,
K. C.
, and
Jonathan
,
P.
, 2008, “
The Effect of Directionality on Northern North Sea Extreme Wave Design Criteria
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
130
, p.
041604
.
3.
Davison
,
A. C.
, and
Smith
,
R. L.
, 1990, “
Models for Exceedances Over High Thresholds
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
52
, pp.
393
442
.
4.
Robinson
,
M. E.
, and
Tawn
,
J. A.
, 1997, “
Statistics for Extreme Sea Currents
,”
J. Appl. Stat.
1360-0532,
46
, pp.
183
205
.
5.
Anderson
,
C. W.
,
Carter
,
D. J. T.
, and
Cotton
,
P. D.
, 2001, “
Wave Climate Variability and Impact on Offshore Design Extremes
,” Report commissioned from the University of Sheffield and Satellite Observing Systems for Shell International.
6.
Chavez-Demoulin
,
V.
, and
Davison
,
A. C.
, 2005, “
Generalized Additive Modelling of Sample Extremes
,”
J. R. Stat. Soc., Ser. C, Appl. Stat.
0035-9254,
54
, pp.
207
222
.
7.
Coles
,
S.
, 2001,
An Introduction to Statistical Modelling of Extreme Values
,
Springer
,
New York
.
8.
Scotto
,
M. G.
, and
Guedes-Soares
,
C.
, 2000, “
Modelling the Long-Term Time Series of Significant Wave Height With Non-Linear Threshold Models
,”
Coastal Eng.
0378-3839,
40
, pp.
313
327
.
9.
Coles
,
S. G.
, and
Powell
,
E. A.
, 1996, “
Bayesian Methods in Extreme Value Modelling: A Review and New Developments
,”
Int. Statist. Rev.
0306-7734,
64
, pp.
119
136
.
10.
Scotto
.
M. G.
, and
Guedes-Soares
,
C.
, 2007, “
Bayesian Inference for Long-Term Prediction of Significant Wave Height
,”
Coastal Eng.
0378-3839,
54
, pp.
393
400
.
11.
Coles
,
S. G.
, and
Casson
,
E.
, 1998, “
Extreme Value Modelling of Hurricane Wind Speeds
,”
Struct. Safety
0167-4730,
20
, pp.
283
296
.
12.
Casson
,
E.
, and
Coles
,
S. G.
, 1999, “
Spatial Regression Models for Extremes
,”
Extremes
,
1
, pp.
449
468
. 0002-7820
13.
Coles
,
S. G.
, and
Tawn
,
J. A.
, 1996, “
A Bayesian Analysis of Extreme Rainfall Data
,”
J. Appl. Stat.
1360-0532,
45
, pp.
463
478
.
14.
Coles
,
S. G.
, and
Tawn
,
J. A.
, 2005, “
Bayesian Modelling of Extreme Sea Surges on the UK East Coast
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
363
, pp.
1387
1406
.
15.
Ledford
,
A. W.
, and
Tawn
,
J. A.
, 1997, “
Modelling Dependence Within Joint Tail Regions
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
59
, pp.
475
499
.
16.
Heffernan
,
J. E.
, and
Tawn
,
J. A.
, 2004, “
A Conditional Approach for Multivariate Extreme Values
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
1369-7412,
66
, pp.
497
546
.
17.
Guedes-Soares
,
C.
, and
Scotto
,
M.
, 2001, “
Modelling Uncertainty in Long-Term Predictions of Significant Wave Height
,”
Ocean Eng.
0029-8018,
28
, pp.
329
342
.
18.
GOMOS
, 2005, Oceanweather, Inc.
19.
Eastoe
,
E. F.
, 2007, “
Statistical Models for Dependent and Non-Stationary Extreme Events
,” Ph. D. thesis, University of Lancaster, UK.
20.
Stiff
,
J. J.
,
Roper
,
R. R.
,
Cardone
,
V. J.
,
Cox
,
A.
, and
Lewis
,
D. R.
, 2006, “
Metocean Criteria for Jack-Ups in the Gulf of Mexico
,”
Offshore Technology Conference
, Paper No. OTC17879.
21.
Embrechts
,
P.
,
Klueppelberg
,
C.
, and
Mikosch
,
T.
, 2003,
Modelling Extremal Events for Insurance and Finance
,
Springer-Verlag
,
Berlin
.
22.
Jonathan
,
P.
, and
Ewans
,
K. C.
, 2010, “
A Spatiodirectional Model for Extreme Waves in the Gulf of Mexico
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
133
, p.
011601
.
23.
Ramsay
,
T.
, 2002, “
Spline Smoothing Over Difficult Regions
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
1369-7412,
64
, pp.
307
319
.
You do not currently have access to this content.