A nonlinear three-dimensional two-way coupled fluid-sediment interaction model is developed in this study. The model is composed of a generalized Navier–Stokes solver (GNS) with a volume of fluid module for air-water interface tracking and a sediment transport module (STM) for fluid-sediment interface tracking. The GNS model is based on the finite difference method with a turbulent stress model of large-eddy simulation to compute incompressible viscous multiphase flows. The STM is used to compute nonlinear sediment bed profile change due to bed-load sediment transport. A two-way coupling scheme connecting GNS with STM is implemented at each time step to ensure the fluid-sediment interaction. For validation, the fluid-sediment interaction model is applied to predict cross-shore profile change of a sloping beach due to breaking solitary waves, and the resulting predictions are examined and compared with the measured data from a set of hydraulic tests. It is found that the fluid-sediment interaction model predicts reasonably well the sediment transport and the resulting beach profile change. The sensitivity of model parameters involving the sediment transport to the beach profile change is analyzed. Finally, the fluid-sediment interaction model is applied to predict local scour in front of a quay wall due to a jet flow to demonstrate its applicability to general three-dimensional problems.

1.
Nakamura
,
T.
,
Mizutani
,
N.
, and
Yim
,
S. C.
, 2009, “
A Three-Dimensional Coupled Fluid-Sediment Interaction Model With Bed-Load/Suspended-Load Transport for Scour Analysis Around a Fixed Structure
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
131
(
3
), p.
031104
.
2.
Brørs
,
B.
, 1999, “
Numerical Modeling of Flow and Scour at Pipeline
,”
J. Hydraul. Eng.
0733-9429,
125
(
5
), pp.
511
523
.
3.
Roulund
,
A.
,
Sumer
,
B. M.
,
Fredsøe
,
J.
, and
Michelsen
,
J.
, 2005, “
Numerical and Experimental Investigation of Flow and Scour Around a Circular Pile
,”
J. Fluid Mech.
0022-1120,
534
, pp.
351
401
.
4.
Li
,
L.
,
Barry
,
D. A.
,
Pattiaratchi
,
C. B.
, and
Masselink
,
G.
, 2002, “
BeachWin: Modeling Groundwater Effects on Swash Sediment Transport and Beach Profile Changes
,”
Environ. Modell. Software
1364-8152,
17
(
3
), pp.
313
320
.
5.
Liang
,
D.
, and
Cheng
,
L.
, 2005, “
Numerical Model for Wave-Induced Scour Below a Submarine Pipeline
,”
J. Waterway Port, Coastal, Ocean Eng.
,
131
(
5
), pp.
193
202
.
6.
Liu
,
X.
, and
García
,
M. H.
, 2008, “
Three-Dimensional Numerical Model With Free Water Surface and Mesh Deformation for Local Sediment Scour
,”
J. Waterway Port Coastal, Ocean Eng.
,
134
(
4
), pp.
203
217
.
7.
Lee
,
K. -H.
, and
Mizutani
,
N.
, 2006, “
Local Scour Near a Vertical Submerged Breakwater and Development of Its Time Domain Analysis
,”
Annual Journal of Coastal Engineering
0916-7897,
53
, pp.
501
505
.
8.
Gislason
,
K.
,
Fredsøe
,
J.
, and
Sumer
,
B. M.
, 2009, “
Flow Under Standing Waves Part 2. Scour and Deposition in Front of Breakwaters
,”
Coastal Eng.
0378-3839,
56
(
3
), pp.
363
370
.
9.
Kobayashi
,
N.
, and
Lawrence
,
A. R.
, 2004, “
Cross-Shore Sediment Transport Under Breaking Solitary Waves
,”
J. Geophys. Res.
0148-0227,
109
, p.
C03047
.
10.
Nakamura
,
T.
,
Kuramitsu
,
Y.
, and
Mizutani
,
N.
, 2008, “
Tsunami Scour Around a Square Structure
,”
Coastal Engineering Journal
,
50
(
2
), pp.
209
246
.
11.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
12.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
13.
Mizutani
,
N.
,
McDougal
,
W. G.
, and
Mostafa
,
A. M.
, 1996, “
BEM-FEM Combined Analysis of Nonlinear Interaction Between Wave and Submerged Breakwater
,”
Proceedings of the 25th International Conference on Coastal Engineering ASCE
, pp.
2377
2390
.
14.
Salvetti
,
M. V.
, and
Banerjee
,
S.
, 1995, “
A Priori Tests of a New Dynamic Subgrid-Scale Model for Finite Difference Large-Eddy Simulations
,”
Phys. Fluids
1070-6631,
7
(
11
), pp.
2831
2847
.
15.
Kawasaki
,
K.
, 1999, “
Numerical Simulation of Breaking and Post-Breaking Wave Deformation Process Around a Submerged Breakwater
,”
Coastal Engineering Journal
,
41
(
3–4
), pp.
201
223
.
16.
Hinatsu
,
M.
, 1992, “
Numerical Simulation of Unsteady Viscous Nonlinear Waves Using Moving Grid System Fitted on a Free Surface
,”
J. Kansai Soc. Nav. Archit.
1346-7727,
217
, pp.
1
11
.
17.
Morinishi
,
Y.
, and
Vasilyev
,
O. V.
, 2001, “
A Recommended Modification to the Dynamic Two-Parameter Mixed Subgrid Scale Model for Large Eddy Simulation of Wall Bounded Turbulent Flow
,”
Phys. Fluids
1070-6631,
13
(
11
), pp.
3400
3410
.
18.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
(
7
), pp.
1760
1765
.
19.
National Astronomical Observatory of Japan
, 2003,
Chronological Scientific Tables
,
Maruzen Co.
,
Tokyo, Japan
.
20.
Engelund
,
F.
, and
Fredøe
,
J.
, 1976, “
A Sediment Transport Model for Straight Alluvial Channels
,”
Nord. Hydrol.
0029-1277,
7
, pp.
293
306
.
21.
Zhao
,
M.
, and
Cheng
,
L.
, 2008, “
Numerical Modeling of Local Scour Below a Piggyback Pipeline in Currents
,”
J. Hydraul. Eng.
0733-9429,
134
(
10
), pp.
1452
1463
.
22.
Sumer
,
B. M.
, and
Fredsøe
,
J.
, 2002, “
The Mechanics of Scour in the Marine Environment
,”
Advanced Series on Ocean Engineering
,
World Scientific
,
Singapore
, Vol.
17
.
23.
Brooks
,
H. N.
, 1963, “
Discussion on ‘Boundary Shear Stresses in Curved Trapezoidal Channels’
,”
J. Hydr. Div.
0044-796X,
89
(
3
), pp.
327
333
.
24.
Smith
,
W. O.
,
Foote
,
P. D.
, and
Busang
,
P. F.
, 1931, “
Capillary Rise in Sands of Uniform Spherical Grains
,”
Physics
0092-8437,
1
, pp.
18
26
.
25.
Smith
,
W. O.
, 1933, “
Minimum Capillary Rise in an Ideal Uniform Soil
,”
Physics
0092-8437,
4
, pp.
184
193
.
26.
Lee
,
K. -H.
,
Mizutani
,
N.
,
Hur
,
D. -S.
, and
Kamiya
,
A.
, 2007, “
The Effect of Groundwater on Topographic Changes in a Gravel Beach
,”
Ocean Eng.
0029-8018,
34
(
3–4
), pp.
605
615
.
27.
Mizutani
,
N.
,
Nakamura
,
T.
,
Shinoda
,
Y.
, and
Koyama
,
H.
, 2009, “
Local Scour in Front of Quay Wall Caused by Bow Thruster and Its Countermeasure Using Filter Units
,”
Proceedings of the 19th International Offshore and Polar Engineering Conference
, pp.
1280
1287
.
28.
Amsden
,
A. A.
, and
Harlow
,
F. H.
, 1970, “
A Simplified MAC Technique for Incompressible Fluid Flow Calculation
,”
J. Comput. Phys.
0021-9991,
6
, pp.
322
325
.
29.
Nakamura
,
T.
,
Hur
,
D. -S.
, and
Mizutani
,
N.
, 2008, “
Mechanism of Backfilling Sand Discharge From a Gap Under a Vertical Revetment
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
134
(
3
), pp.
178
186
.
30.
Osher
,
S.
, and
Chakravarthy
,
S.
, 1984, “
Very High Order Accurate TVD Schemes
,” ICASE Report No. 84-44,
NASA
Langley Research Center.
31.
Kunugi
,
T.
, 2000, “
MARS for Multiphase Calculation
,”
Comput. Fluid Dyn. J.
0918-6654,
9
(
1
), p.
1
10
.
You do not currently have access to this content.