Abstract
A new model for fluid structure interaction during vortex shedding process and associated vortex induced vibration (VIV) of a cylinder in transverse direction is proposed. The present work is based on restrained inline motion. Nevertheless, the model can be further extended to include inline interaction. This is not the scope of the present work. The model predicts the control of shedding frequency by reduced velocity and collapsing it to structure natural frequency. It captures the self-exciting and self-limiting nature of VIV excitations and adequately describes the transverse force and motions experienced by an oscillating cylinder in steady flow with lift, added mass, and damping. Thus, steady state responses obtained from the model represent the unique nature of VIV found in the laboratory over a range of reduced velocities of practical importance. The model will benefit future extension to include interaction due to inline motion such that a better VIV prediction could be obtained for free cylinder vibration.