The paper examines the mechanism of pile installation by vertical jet fluidization in saturated sand in order to define the constitutive parameters that control installation geometry and pile depth of embedment. A series of laboratory model tests representative of offshore torpedo piles was carried out using downwardly directed vertical water jets in both medium and dense sands. Measurements from model tests at three different scales indicate that the geometry of fluidized cavities is not influenced by the initial density of the sand and that the perturbed zone is constrained to a distance of about two pile diameters from the pile centerline during pile installation. Following the laws of dimensional analysis, an expression for the embedment of fluidized piles is derived and shows that penetration depth is a function of pile weight and geometry, fluidized water jet flow rate and velocity, as well as the soil and fluid properties. Penetration is shown to increase with increasing flow rate and pile weight and decreasing soil relative density. Although the results have to be validated by tests at larger scales to prove compatibility with the full-scale behavior, model tests indicate maximum embedment depth of the order of 50 times the pile diameter.

References

1.
Weisman
,
R. N.
,
Collins
,
A. G.
, and
Parks
,
J. M.
,
1982
, “
Maintaining Tidal Inlet Channels by Fluidization
,”
ASCE J. Waterw., Harbors Coastal Eng. Div.
,
108
(
WW4
), pp.
526
538
.
2.
Weisman
,
R. N.
,
Lennon
,
G. P.
, and
Roberts
,
E. W.
,
1988
, “
Experiment on Fluidization in UnBounded Domains
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
114
(
5
), pp.
502
515
.10.1061/(ASCE)0733-9429(1988)114:5(502)
3.
Weisman
,
R. N.
, and
Lennon
,
G. P.
,
1994
, “
Design of Fluidizer Systems for Coastal Environment
,”
ASCE J. Waterw., Harbors Coastal Eng. Div.
,
120
(
5
), pp.
468
487
.10.1061/(ASCE)0733-950X(1994)120:5(468)
4.
Weisman
,
R. N.
, and
Lennon
,
G. P.
,
1996
, “
A Guide to the Planning and Hydraulic Design of Fluidizer Systems for Sand Management in the Coastal Environment
,” Dredging Research Program, Prepared for the U.S. Army Corps of Engineers, Lehigh University, Bethlehem, PA, Technical Report No. DRP-96-3.
5.
Khalili
,
N.
, and
Niven
,
R. K.
,
1996
, “
Upflow Washing: A New in Situ Technology for Organic and Metal Remediation
,”
3rd International Symposium on Environmental Geotechnology
, Technomic Publishing, San Diego, CA, Vol.
1
, pp.
745
754
.
6.
Niven
,
R. K.
,
1998
, “
In Situ Multiphase Fluidisation (“Upflow Washing”) for the Remediation of Diesel and Lead Contaminated Soils
,” Ph.D. thesis, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia.
7.
Westrich
,
B.
, and
Kokus
,
H.
,
1973
, “
Erosion of a Uniform Sand Bed by Continuous and Pulsating Jets
,”
International Association of Hydraulic Research Congress
, Istanbul, Turkey, Vol.
1
(
A13
), pp.
1
3
.
8.
Rajaratnam
,
N.
, and
Beltaos
,
S.
,
1977
, “
Erosion by Impinging Circular Turbulent Jets
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
103
(
10
), pp.
1191
1205
.
9.
Rajaratnam
,
N.
,
1982
, “
Erosion by Submerged Circular Jets
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
108
(
HY2
), pp.
262
267
.
10.
Aderibigbe
,
O. O.
, and
Rajaratnam
,
N.
,
1996
, “
Erosion of Loose Beds by Submerged Circular Impinging Turbulent Jets
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
34
(
1
), pp.
19
33
.10.1080/00221689609498762
11.
Rajaratnam
,
N.
, and
Mazureck
,
K. A.
,
2003
, “
Erosion of Sand by Circular Impinging Water Jets With Small Tail Water
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
129
(
3
), pp.
225
229
.10.1061/(ASCE)0733-9429(2003)129:3(225)
12.
Alsaydalani
,
M. O. A.
, and
Clayton
,
C. R. I.
,
2014
, “
Internal Fluidization in Granular Soils
,”
ASCE J. Geotech. Geoenviron. Eng.
,
140
(
3
), pp.
1
10
.10.1061/(ASCE)GT.1943-5606.0001039
13.
Shestopal
,
A. O.
,
1959
,
Jetting of Pipes, Piles, and Sheet Piles
,
Hydroproject Institute
,
Moscow, USSR
, (in Russian).
14.
Tsinker
,
G. P.
,
1988
, “
Pile Jetting
,”
ASCE J. Geotech. Geoenviron. Eng.
,
114
(
3
), pp.
326
334
.10.1061/(ASCE)0733-9410(1988)114:3(326)
15.
Gunaratne
,
M.
,
Hameed
,
R. A.
,
Kuo
,
C.
,
Putcha
,
S.
, and
Reddy
,
D. V.
,
1999
, “
Investigation of the Effects of Pile Jetting and Preforming
,” Prepared for the Florida Department of Transportation, in Cooperation With Federal Highway Administration, University of South Florida, Tampa, FL, Research Report No. 772.
16.
Smith
,
W. A.
,
2003
, “
Jetting Techniques for Pile Installation and Environmental Impact Minimization
,” M.Sc. thesis, North Carolina State University, Raleigh, NC.
17.
Gabr
,
M. A.
,
Borden
,
R. H.
,
Smith
,
A. W.
, and
Denton
,
R. L.
,
2007
, “
Laboratory Characterization of Jetting-Induced Disturbance Zones
,” Geo-Denver 2007: New Peaks in Geotechnics,
GSP 172
Soil Improvement, Denver, CO, pp.
1
10
.10.1061/40916(235)15
18.
Xu
,
G. H.
,
Yue
,
Z. Q.
,
Liu
,
D. F.
, and
He
,
F. R.
,
2006
, “
Grouted Jetted Precast Concrete Sheet Piles: Method, Experiments, and Applications
,”
Can. Geotech. J.
,
43
(
12
), pp.
1358
1373
.10.1139/t06-094
19.
Zeilinger
,
H. M.
,
2009
, “
The Vibro-Jetting Driving Method
,”
International Foundation Congress and Equipment Expo—Contemporary Topics in Deep Foundations
, ASCE,
Orlando, FL
, pp.
311
318
.
20.
Bhasi
,
A.
,
Rajagopal
,
K.
, and
Reddy
,
D. V.
,
2010
, “
Finite Element Study of the Influence of Pile Jetting on Load Capacity of Adjacent Piles
,”
Int. J. Geotech. Eng.
,
4
(
3
), pp.
361
370
.10.3328/IJGE.2010.04.03.361-370
21.
Medeiros
,
C. J.
, Jr.
,
2002
, “
Low Cost Anchor System for Flexible Risers in Deep Waters
,”
Offshore Technology Conference
, Houston, TX, pp.
1
5
, Paper No. OTC 14151.10.4043/14151-MS
22.
Fernandes
,
A. C.
,
Araujo
,
J. B.
,
Almeida
,
J. C. L.
,
Machado
,
R. D.
, and
Matos
,
V.
,
2006
, “
Torpedo Anchor Installation Hydrodynamics
,”
ASME J. Offshore Mech. Arct. Eng.
,
128
(
4
), pp.
286
293
.10.1115/1.2355514
23.
Kunitaki
,
D. M. K. N.
,
2006
, “
Uncertainty Treatment in the Dynamic Behavior of Torpedo Pile of Floating Systems Anchoring in Offshore Petroleum Exploitation
,” M.Sc. thesis, Federal University of Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, Brazil (in Portuguese).
24.
Aguiar
,
C. S.
,
2007
, “
Pile–Soil Interaction in Offshore Foundation
”, M.Sc. thesis, Federal University of Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, Brazil (in Portuguese
)
.
25.
Costa
,
R. G. B.
,
2008
, “
Parametric Analysis of the Conditions for Anchoring Offshore Platforms Using Torpedo Pile From Finite Element Models
,” M.Sc. thesis, Federal University of Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, Brazil (in Portuguese).
26.
Henriques
,
P. R. D.
, Jr.
,
Foppa
,
D.
,
Porto
,
E. C.
, and
Medeiros
,
C. J.
, Jr.
,
2010
, “
Alternative Torpedo Anchor for Heavy Loads Anchorage
,”
15th Brazilian Congress of Soil Mechanics and Geotechnical Engineering—COBRAMSEG
,
Gramado, Brazil
(in Portuguese), pp.
1
8
.
27.
Lavieri
,
R. S.
,
2011
, “
Inertial Navigation Methods Applied to Submarine Launches
,” M.Sc. thesis, Polytechnic School of the University of São Paulo, São Paulo, Brazil (in Portuguese).
28.
Randolph
,
M. F.
,
Cassidy
,
M.
,
Gournec
,
S.
, and
Erbrich
,
C.
,
2005
, “
Challenges of Offshore Geotechnical Engineering
,”
16th International Conference on Soil Mechanics and Foundation Engineering
,
Osaka, Japan
, Vol.
1
, pp.
123
176
.
29.
O'Loughlin
,
C. D.
,
Randolph
,
M. F.
, and
Richardson
,
M.
,
2004
, “
Experimental and Theoretical Studies of Deep Penetrating Anchors
,”
Offshore Technology Conference
,
Houston, TX
, pp.
1
11
, Paper No. OTC 16841.
30.
Gilbert
,
R. B.
,
Movant
,
M.
, and
Audibert
,
J.
,
2008
, “
Torpedo Piles Joint Industry Project—Model Torpedo Pile Tests in Kaolinite Test Beds
,” Prepared for the Minerals Management Service, The University of Texas at Austin, Austin, TX, Final Project Report No. 575.
31.
Mezzomo
,
S. M.
,
2009
, “
Study of Fluidization Using Water Jets in Sand
,” M.Sc. thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, (in Portuguese).
32.
Stracke
,
F.
,
2012
, “
Fluidization of Sand Associated to Injection of Cement Agent for Applying in Offshore Structures
,” M.Sc. thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (in Portuguese).
33.
Schnaid
,
F.
,
Passini
,
L.
,
Stracke
,
F.
, and
Mezzomo
,
S.
,
2014
, “
On the Response of Fluidized Piles From Laboratory Model Tests in Granular Soils
,”
J. Geo-Eng. Sci.
,
1
(
2
), pp.
69
81
.10.3233/JGS-140024
34.
Alawneh
,
A. S.
,
Malkawi
,
A. I. H.
, and
Al-Deeky
,
H.
,
1999
, “
Tension Tests on Smooth and Rough Model Piles in Dry Sand
,”
Can. Geotech. J.
,
36
(
4
), pp.
746
753
.10.1139/t98-104
35.
Shanker
,
K.
,
Basudhar
,
P. K.
, and
Patra
,
N. R.
,
2007
, “
Uplift Capacity of Single Piles: Prediction and Performance
,”
Geotech. Geol. Eng.
,
25
(
2
), pp.
151
161
.10.1007/s10706-006-9000-z
36.
Kumar
,
J.
, and
Bhoi
,
M. K.
,
2009
, “
Vertical Uplift Capacity of Equally Spaced Multiple Strip Anchors in Sand
,”
Geotech. Geol. Eng.
,
27
(
3
), pp.
461
472
.10.1007/s10706-008-9247-7
37.
Lehane
,
B. M.
,
Jardine
,
R. J.
,
Bond
,
A. J.
, and
Frank
,
R.
,
1993
, “
Mechanisms of Shaft Friction in Sand From Instrumented Pile Tests
,”
ASCE J. Geotech. Eng.
,
119
(
1
), pp.
19
35
.10.1061/(ASCE)0733-9410(1993)119:1(19)
38.
Lehane
,
B. M.
,
Schneider
,
J. A.
,
Lim
,
J. K.
, and
Mortara
,
G.
,
2012
, “
Shaft Friction From Instrumented Displacement Piles in an Uncemented Calcareous Sand
,”
ASCE J. Geotech. Eng.
,
138
(
11
), pp.
1357
1368
.10.1061/(ASCE)GT.1943-5606.0000712
39.
Leva
,
M.
,
1959
,
Fluidization
,
McGraw-Hill
,
New York
.
40.
Consoli
,
N. C.
,
Casagrande
,
M. D. T.
, and
Coop
,
M. D.
,
2007
, “
Performance of a Fiber Reinforced Sand at Large Shear Strains
,”
Geotechnique
,
57
(
9
), pp.
751
756
.10.1680/geot.2007.57.9.751
41.
Araujo
,
J. D.
,
Machado
,
R. D.
, and
Medeiros
,
C. J.
, Jr.
,
2004
, “
High Holding Power Torpedo Pile—Results for the First Long Term Application
,”
ASME
Paper No. OMAE2004-51201.10.1115/OMAE2004-51201
42.
Silva
,
U. A.
,
Galgoul
,
N. S.
, and
Medeiros
,
C. J.
, Jr.
,
2008
, “
Dynamic Analysis of Torpedo Piles
,”
14th Brazilian Congress of Soil Mechanics and Geotechnical Engineering—COBRAMSEG
,
Búzios, Brazil
, pp.
634
639
(in Portuguese).
43.
Sousa
,
J. R. M.
,
Aguiar
,
C. S.
,
Ellwanger
,
G. B.
,
Porto
,
E. C.
,
Foppa
,
D.
, and
Medeiros
,
C. J.
,
2011
, “
Undrained Load Capacity of Torpedo Anchors Embedded in Cohesive Soils
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
2
), pp.
1
12
.10.1115/1.4001953
44.
Kumar
,
P. R.
,
2007
, “
Scaling Laws and Experimental Modeling of Contaminant Transport Mechanism Through Soils in a Geotechnical Centrifuge
,”
Geotech. Geol. Eng.
,
25
(
5
), pp.
581
590
.10.1007/s10706-007-9131-x
45.
Cedergren
,
H. R.
,
1997
,
Seepage, Drainage, and Flow Nets–Part I
, 3rd ed.,
Wiley
,
New York
, Chaps. II–III.
46.
Sara
,
M. N.
,
2003
,
Site Assessment and Remediation Handbook
, 2nd ed.,
CRC Press
,
Boca Raton
, Chaps. V, VII–VIII.
47.
Foray
,
P.
,
Balachowski
,
L.
, and
Rault
,
G.
,
1998
, “
Scale Effect in Shaft Friction Due to the Localization of Deformations
,”
Centrifuge 98
,
T.
Kimura
,
O.
Kusakabe
, and
J.
Takemura
, eds., Tokyo, Japan,
A. A. Balkema
,
Rotterdam, Netherlands
, Vol.
1
, pp.
211
216
.
48.
Garnier
,
J.
, and
Konig
,
D.
,
1998
, “
Scale Effects in Piles and Nails Loading Tests in Sand
,”
Centrifuge 98
, Vol.
1
,
A. A. Balkema
,
Rotterdam, Netherlands
, pp.
205
210
.
49.
Bruno
,
D.
, and
Randolph
,
M. F.
,
1999
, “
Dynamic and Static Load Testing of Model Piles Driven Into Dense Sand
,”
ASCE J. Geotech. Geoenviron. Eng.
,
125
(
11
), pp.
988
998
.10.1061/(ASCE)1090-0241(1999)125:11(988)
50.
Loukidis
,
D.
, and
Salgado
,
R.
,
2008
, “
Analysis of the Shaft Resistance of Non-Displacement Piles in Sand
,”
Geotechnique
,
58
(
4
), pp.
283
296
.10.1680/geot.2008.58.4.283
51.
Arshad
,
M. I.
,
Tehrani
,
F. S.
,
Prezzi
,
M.
, and
Salgado
,
R.
,
2014
, “
Experimental Study of Cone Penetration in Silica Sand Using Digital Image Correlation
,”
Geotechnique
,
64
(
7
), pp.
551
569
.10.1680/geot.13.P.179
52.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
Mechanics of Fluidization
,”
Chemical Engineering Progress Symposium Series, Fluid Particle Technology
,
New York
, Vol. 62(
62
), pp.
100
111
.
53.
Mih
,
W. C.
, and
Kabir
,
J.
,
1983
, “
Impingement of Water Jets on Nonuniform Streambed
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
109
(
4
), pp.
536
548
.10.1061/(ASCE)0733-9429(1983)109:4(536)
54.
O'Loughlin
,
C. D.
,
Randolph
,
M. F.
, and
Richardson
,
M.
,
2009
, “
Centrifuge Tests on Dynamically Installed Anchors
,”
ASME
Paper No. OMAE2009-80238.10.1115/OMAE2009-80238
55.
Fan
,
Y.
,
Chen
,
Z.
,
Liang
,
X.
,
Zhang
,
X.
, and
Huang
,
X.
,
2012
, “
Geotechnical Centrifuge Model Tests for Explosion Cratering and Propagation Laws of Blast Wave in Sand
,”
J. Zhejiang Univ., Sci., A
,
13
(
5
), pp.
335
343
.10.1631/jzus.A1100227
You do not currently have access to this content.