Polycrystalline isotropic ice was selected as the material of choice for this fundamental study on the mechanical behavior of ice. Two essential properties of the ice structure are the porosity and degree of anisotropy (DA). On the one hand, it is clear that these two factors have a great influence on the mechanical properties of the material. On the other hand, however, they are strongly dependent on the laboratory procedure used to fabricate the ice samples. Thus, in this work, three procedures to produce ice samples are analyzed. For this purpose, the structural and mechanical properties observed in uniaxial compression tests are discussed for each sample fabrication procedure. Then, after the most suitable fabrication procedure has been determined, the viscous behavior of isotropic ice is analyzed and discussed using the results of simple compression test at different temperatures and axial strain rates.

References

1.
Sinha
,
N. K.
,
1983
, “
Creep Model of Ice for Monotonically Increasing Stress
,”
Cold Reg. Sci. Technol.
,
8
(
1
), pp.
25
33
.
2.
Ashby
,
M. F.
, and
Duval
,
P.
,
1985
, “
The Creep of Polycrystalline Ice
,”
Cold Reg. Sci. Technol.
,
11
(
3
), pp.
285
300
.
3.
Derradji-Aouat
,
A.
,
Sinha
,
N. K.
, and
Evgin
,
E.
,
2000
, “
Mathematical Modelling of Monotonic and Cyclic Behaviour of Fresh Water Columnar Grained S-2 Ice
,”
Cold Reg. Sci. Technol.
,
31
(
1
), pp.
59
81
.
4.
Elvin
,
A. A.
, and
Sunder
,
S. S.
,
1996
, “
Microcracking Due to Grain Boundary Sliding in Polycrystalline Ice Under Uniaxial Compression
,”
Acta Mater.
,
44
(
1
), pp.
43
56
.
5.
Choi
,
D. H.
, and
Connor
,
J. J.
,
1997
, “
A Constitutive Creep Model for Single Crystal Ice
,”
Mech. Mater.
,
25
(
2
), pp.
97
112
.
6.
Aryanpour
,
G.
, and
Farzaneh
,
M.
,
2013
, “
Contribution of Primary Creep in Modeling the Mechanical Behavior of Polycrystalline Ice
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
3
), pp.
31502
31506
.
7.
Kermani
,
M.
,
Farzaneh
,
M.
, and
Gagnon
,
R.
,
2007
, “
Compressive Strength of Atmospheric Ice
,”
Cold Reg. Sci. Technol.
,
49
(
3
), pp.
195
205
.
8.
Farid
,
H.
,
Farzaneh
,
M.
,
Saeidi
,
A.
, and
Erchiqui
,
F.
,
2016
, “
A Contribution to the Study of the Compressive Behavior of Atmospheric Ice
,”
Cold Reg. Sci. Technol.
,
121
, pp.
60
65
.
9.
Li
,
Z.
,
Zhang
,
L.
,
Lu
,
P.
,
Leppäranta
,
M.
, and
Li
,
G.
,
2011
, “
Experimental Study on the Effect of Porosity on the Uniaxial Compressive Strength of Sea Ice in Bohai Sea
,”
Sci. China Technol. Sci.
,
54
(
9
), p.
2429
.
10.
Eskandarian
,
M.
,
2005
, “
Ice Shedding From Overhead Electrical Lines by Mechanical Breaking: A Ductile Model for Viscoplastic Behaviour of Atmospheric Ice
,” Ph.D. thesis, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada.
11.
Skyscan-Bruker-Microct
,
2016
, “
Morphometric Parameters Measured by SkyscanTM CT-Analyser Software
,” Bruker Microct, Kontich, Belgium.
12.
Schwarz
,
J.
,
Frederking
,
R.
,
Gavrillo
,
V.
,
Petrov
,
I. G.
,
Hirayama
,
K.-I.
,
Mellor
,
M.
,
Tryde
,
P.
, and
Vaudrey
,
K. D.
,
1981
, “
Standardized Testing Methods for Measuring Mechanical Properties of Ice
,”
Cold Reg. Sci. Technol.
,
4
(
3
), pp.
245
253
.
13.
ASTM
,
2002
, “
Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens
,” ASTM International, West Conshohocken, PA, Standarad No.
ASTM D2938-95
.
14.
ASTM
,
2008
, “
Standard Practices for Preparing Rock Core Specimens and Determining Dimensional and Shape Tolerances
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D4543-01
.
15.
Petrenko
,
V. F.
, and
Whitworth
,
R. W.
,
1999
,
Physics of Ice
,
Oxford University Press
,
New York
, Chap 8.
16.
Mellor
,
M.
, and
Cole
,
D. M.
,
1982
, “
Deformation and Failure of Ice Under Constant Stress or Constant Strain-Rate
,”
Cold Reg. Sci. Technol.
,
5
(
3
), pp.
201
219
.
17.
Glen
,
J. W.
,
1955
, “
The Creep of Polycrystalline Ice
,”
Proc. R. Soc. London. Ser. A
,
228
(
1175
), pp.
519
538
.
You do not currently have access to this content.