Inflatable devices that provide reserve buoyancy to damaged ships, preventing capsizing and/or sinking, along with lifting wreckages from the seabed, were studied within the framework of the European funded project “SuSy” (Surfacing System for Ship Recovery). Part of the work involved material evaluation and testing as well as simulations of the structural response. This paper first describes an orthotropic hyperelastic constitutive model for a candidate material also used in the fabrication of prototype inflatable devices. A strain energy density function is proposed that is further used to derive the stress and elasticity tensors required for the numerical implementation of the model in the user-defined subroutine (UMAT) of abaqus/standard. The second part of the paper presents the finite element simulation of the latter stages of inflation of two salvage devices inside an actual double bottom structure. The numerical results are in good agreement with tests conducted in dry land and under water, with the structure raised following the inflation of the devices. The evolving stress state in both the devices and the double bottom structure under increased contact interaction leads to useful conclusions for future use in the development of this salvage system.

References

1.
IACS
,
2010
,
Common Structural Rules for Double Hull Tankers
,
International Association of Classification Societies
,
London
.
2.
Zilakos
,
I. K.
,
Karatzas
,
V. A.
,
Chatzidouros
,
E. V.
, and
Papazoglou
,
V. J.
,
2011
, “
Simulation of External Application of SuSy Devices on an Aframax Tanker That Has Been Structurally Compromised
,”
International Conference on Design and Operation of Tankers
, Athens, Greece, June 8–9, pp.
121
130
.
3.
Dhanak
,
M. R.
, and
Xiros
,
N. I.
,
2016
,
Springer Handbook of Ocean Engineering
,
Springer International Publishing
,
New York
.
4.
Prot
,
V.
,
Skallerud
,
B.
, and
Holzapfel
,
G. A.
,
2007
, “
Transversely Isotropic Membrane Shells With Application to Mitral Valve Mechanics. Constitutive Modelling and Finite Element Implementation
,”
Int. J. Numer. Methods Eng.
,
71
(
8
), pp.
987
1008
.
5.
ABAQUS
,
2013
,
ABAQUS Theory Guide
,
Dassault Systèmes Simulia Corp
.,
Providence, RI
.
6.
DIN,
1993
, “
Testing of Textiles; Determinations of Mass of Textile Fabrics With the Exception of Knitted Fabrics and Nonwoven
,” Deutsches Institut Fur Normung, Berlin, Standard No.
DIN 53854
.https://infostore.saiglobal.com/store/Details.aspx/Details.aspx?productID=563034
7.
DIN
,
1982
, “
Testing of Textiles: Determination of the Thickness of Textile Fabrics (except Floor Coverings); Apparent Density Over 0.05 g/cm³
,” Deutsches Institut Fur Normung, Berlin, Standard No. DIN 53855.
8.
DIN
,
1979
, “
Testing of Textiles; Simple Tensile Test on Strips of Textile Fabrics, Woven Fabrics and Ribbons
,” Deutsches Institut Fur Normung, Berlin, Standard No.
DIN 53857
.https://infostore.saiglobal.com/en-au/standards/din-53857-1-1979-09--569927/
9.
ISO
,
2000
, “
Textiles—Tear Properties of Fabrics—Part 2: Determination of Tear Force of Trouser-Shaped Test Specimens (Single Tear Method)
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 13937
.https://www.iso.org/obp/ui/#iso:std:iso:13937:-2:ed-1:v1:en
10.
Spencer
,
A. J. M.
,
1984
,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer-Verlag
,
Vienna, Italy
.
11.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
On Planar Biaxial Tests for Anisotropic Nonlinearly Elastic Solids. A Continuum Mechanical Framework
,”
Math. Mech. Solids
,
14
(
5
), pp.
474
489
.
12.
Sun
,
W.
,
Chaikof
,
E. L.
, and
Levenston
,
M. E.
,
2008
, “
Numerical Approximation of Tangent Moduli for Finite Element Implementations of Nonlinear Hyperelastic Material Models
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061003
.
13.
Stein
,
E.
, and
Sagar
,
G.
,
2008
, “
Convergence Behavior of 3D Finite Elements for Neo-Hookean Material
,”
Eng. Comput.
,
25
(
3
), pp.
220
232
.
14.
Zilakos
,
I.
, and
Toulios
,
M.
,
2016
, “
Modelling Aspects of Orthotropic Hyperelastic Material Employed in the Design of Innovative Ship Rescue Systems
,”
Vassilios Papazoglou: A Volume in His Honour
,
N.
Tsouvalis
, ed.,
National Technical University of Athens Press
,
Athens, Greece
, pp.
475
483
.
15.
ISO
,
1998
, “
Rubber- or Plastics-Coated Fabrics—Determination of Tensile Strength and Elongation at Break
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 1421
.https://www.iso.org/standard/65588.html
16.
Galliot
,
C.
, and
Luchsinger
,
R. H.
,
2011
, “
Determination of the Response of Coated Fabrics Under Biaxial Stress: Comparison Between Different Test Procedures
,”
Fifth International Conference on Textile Composites and Inflatable Structures, Structural Membranes
, Barcelona, Spain, Oct. 5–7, pp.
636
647
.https://www.researchgate.net/publication/288408929_Determination_of_the_response_of_coated_fabrics_under_biaxial_stress_Comparison_between_different_test_procedures
17.
Chen
,
S.
,
Ding
,
X.
,
Fangueiro
,
R.
,
Yi
,
H.
, and
Ni
,
J.
,
2008
, “
Tensile Behavior of PVC-Coated Woven Membrane Materials Under Uni- and Bi-Axial Loads
,”
J. Appl. Polym. Sci.
,
107
(
3
), pp.
2038
2044
.
18.
Bridgens
,
B. N.
, and
Gosling
,
P. D.
,
2004
, “
Direct Stress-Strain Representation for Coated Woven Fabrics
,”
Comput. Struct.
,
82
(
23–26
), pp.
1913
1927
.
19.
Blum
,
R.
,
Bögner
,
H.
,
Némoz
,
G.
,
2004
, “
Testing Methods and Standards
,”
European Design Guide for Tensile Surface Structures
,
B.
Foster
and
M.
Mollaert
, eds.,
TensiNet
,
Brussels, Belgium
, pp.
294
322
.
20.
Galliot
,
C.
, and
Luchsinger
,
R. H.
,
2009
, “
A Simple Model Describing the Non-Linear Biaxial Tensile Behaviour of PVC-Coated Polyester Fabrics for Use in Finite Element Analysis
,”
Compos. Struct.
,
90
(
4
), pp.
438
447
.
21.
MathWorks,
2016
,
MATLAB and Optimization Toolbox
,
The MathWorks Inc., Natick
,
MA
.
22.
Ogden
,
R. W.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2004
, “
Fitting Hyperelastic Models to Experimental Data
,”
Comput. Mech.
,
34
(
6
), pp.
484
502
.
23.
Destrade
,
M.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2017
, “
Methodical Fitting for Mathematical Models of Rubber-Like Materials
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2198
), p. 20160811.
24.
Oñate
,
E.
,
Flores
,
F. G.
, and
Marcipar
,
J.
,
2008
, “
Membrane Structures Formed by Low Pressure Inflatable Tubes. New Analysis Methods and Recent Constructions
,”
Textile Composites and Inflatable Structures II
,
E.
Oñate
and
B.
Kröplin
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
163
196
.
25.
Arita
,
S.
,
Okumiya
,
T.
, and
Miyazaki
,
Y.
,
2014
, “
Numerical Model for Prediction of Wrinkling Behavior on a Thin-Membrane Structure
,”
Mech. Eng. J.
,
1
(
4
), pp.
41
57
.
26.
ISO
,
1998
, “
Rubber- or Plastics-Coated Fabrics—Determination of Roll Characteristics—Part 2: Methods for Determination of Total Mass per Unit Area, Mass per Unit Area of Coating and Mass per Unit Area of Substrate
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 2286-2
.https://www.iso.org/standard/25482.html
You do not currently have access to this content.