Abstract

High-frequency mechanical impact (HFMI) post-treatment is a proven method to improve the fatigue life of welded structures. The positive effects of HFMI treatment are influenced by the weld toe geometries and residual stresses. This study investigates the effect of geometric and mechanical improvements by HFMI treatment on fatigue strength with explicit consideration of the weld toe magnification factor. General fatigue life estimation method is based on experiment data, and residual stress may be considered in addition. In terms of HFMI-treated structures, geometric improvement also affects the fatigue life. Thus, a more efficient method is suggested by considering the weld toe magnification factor to assess the effects of HFMI treatment. First, the weld toe magnification factor in HFMI-treated conditions is calculated to consider the geometrical effect of HFMI treatment at the weld toe region. Second, a stress ratio model is introduced to consider the compressive residual stress by HFMI treatment based on the Paris equation. The results were validated by comparing them with the estimated fatigue life from previous studies on HFMI-treated welded specimens.

References

1.
Marquis
,
G. B.
, and
Barsoum
,
Z.
,
2015
,
IIW Recommendations for the HFMI Treatment For Improving the Fatigue Strength of Welded Joints
,
Springer
, pp.
1
34
.
2.
Marquis
,
G. B.
,
Mikkola
,
E.
,
Yildirim
,
H. C.
, and
Barsoum
,
Z.
,
2013
, “
Fatigue Strength Improvement of Steel Structures by High-Frequency Mechanical Impact: Proposed Fatigue Assessment Guidelines
,”
Weld. World
,
57
(
6
), pp.
803
822
. 10.1007/s40194-013-0075-x
3.
Leitner
,
M.
,
Stoschka
,
M.
, and
Eichlsedar
,
W.
,
2014
, “
Fatigue Enhancement of Thin-Walled, High-Strength Steel Joints by High-Frequency Mechanical Impact Treatment
,”
Weld. World
,
58
(
1
), pp.
29
39
. 10.1007/s40194-013-0097-4
4.
Simunek
,
D.
,
Leitner
,
M.
, and
Stoschka
,
M.
,
2013
, “
Numerical Simulation Loop to Investigate the Local Fatigue Behavior of Welded and HFMI-Treated Joints
,”
66th Annual Assembly of the International Institute of Welding
,
Essen, Germany, Sept.
11–17
.
5.
Ruiz
,
H.
,
Osawa
,
N.
, and
Rashed
,
S.
,
2019
, “
A Practical Analysis of Residual Stresses Induced by High-Frequency Mechanical Impact Post-Weld Treatment
,”
Weld. World
,
63
(
5
), pp.
1255
1263
. 10.1007/s40194-019-00753-w
6.
Harati
,
E.
,
Svensson
,
L.
,
Karlsson
,
L.
, and
Hurtig
,
K.
,
2016
, “
Effect of HFMI Treatment Procedure on Weld Toe Geometry and Fatigue Properties of High Strength Steel Welds
,”
Procedia Struct. Integr.
,
2
(
1
), pp.
3483
3490
. 10.1016/j.prostr.2016.06.434
7.
Nguyen
,
T. N.
, and
Wahab
,
M. A.
,
1995
, “
A Theoretical Study of the Effect of Weld Geometry Parameters on Fatigue Crack Propagation Life
,”
Eng. Fract. Mech.
,
51
(
1
), pp.
1
18
. 10.1016/0013-7944(94)00241-9
8.
Glinka
,
G.
,
1985
, “
Energy Density Approach to Calculation of Inelastic Strain-Stress Near Notches and 520 Cracks
,”
Eng. Fract. Mech.
,
22
(
3
), pp.
485
508
. 10.1016/0013-7944(85)90148-1
9.
Elber
,
W.
,
1970
, “
The Significance of Fatigue Crack Closure
,”
Damage Tolerance in Aircraft Structures American Society of Testing and Materials, STP 486
,
Toronto, Ontario, Canada
,
June 21–26
, pp.
230
242
.
10.
Walker
,
K.
,
1968
, “
The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum
,”
Effect of Environment and Complex Load History on Fatigue Life American Society of Testing Materials, STP 462
,
Atlanta
,
GA, Sept. 29–Oct. 4
, pp.
1
14
.
11.
Albrecht
,
P.
, and
Yamada
,
K.
,
1977
, “
Rapid Calculation of Stress Intensity Factors
,”
J. Struct. Div.
,
103
(
2
), pp.
377
389
.
12.
Ghahremani
,
K.
,
Safa
,
M.
, and
Yeung
,
J.
,
2015
, “
Quality Assurance for High-Frequency Mechanical Impact (HFMI) Treatment of Welds Using Handheld 3D Laser Scanning Technology
,”
Weld. World
,
59
(
3
), pp.
391
400
. 10.1007/s40194-014-0210-3
13.
Mikkola
,
E.
,
Remes
,
H.
, and
Marquis
,
G. B.
,
2017
, “
A Finite Element Study on Residual Stress Stability and Fatigue Damage in High-Frequency Mechanical Impact (HFMI)-Treated Welded Joint
,”
Int. J. Fatigue
,
94
(
1
), pp.
16
29
. 10.1016/j.ijfatigue.2016.09.009
14.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
534
. 10.1115/1.3656900
15.
Jesus
,
A. M. P.
,
Matos
,
R.
,
Fontoura
,
B. F. C.
,
Rebelo
,
C.
,
Silva
,
L. S. D.
, and
Velikovic
,
M.
,
2012
, “
A Comparison of the Fatigue Behavior Between S355 and S690 Steel Grades
,”
J. Constr. Steel Res.
,
79
, pp.
140
150
. 10.1016/j.jcsr.2012.07.021
16.
Gurney
,
T. R.
,
1979
,
Fatigue of Welded Structures
,
Cambridge University Press
,
New York
.
17.
British Standard Institution
,
2013
,
BS 7910:2013—Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,
BSI Standards
,
London, UK
.
18.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
. 10.1007/BF02667333
19.
Kim
,
M. H.
,
2018
, “
Numerical Simulation of High Frequency Mechanical Impact (HFMI) Treatment in Fillet Welded Joints
,”
International Ship and Offshore Structures Congress 2018
,
Liege, Belgium
,
Sept. 9–13
.
20.
Ernould
,
C.
,
Schubnell
,
J.
,
Farajian
,
M.
,
Maciolek
,
A.
,
Simunek
,
D.
,
Leitner
,
M.
, and
Stoschka
,
M.
,
2019
, “
Application of Different Simulation Approaches to Numerically Optimize High Frequency Mechanical Impact (HFMI) Post-Treatment Process
,”
Weld. World
,
63
, pp.
725
738
. 10.1007/s40194-019-00701-8
21.
Walbridge
,
S.
, and
Nussbaumer
,
A.
,
2007
, “
A Probabilistic Model for Determining the Effect of Post-Weld Treatment on the Fatigue Performance of Tubular Bridge Joints
,”
Int. J. Fatigue
,
29
(
3
), pp.
516
532
. 10.1016/j.ijfatigue.2006.04.006
22.
Mehrzadi
,
M.
, and
Taheri
,
F.
,
2012
, “
The Influence of Negative and Positive Stress Ratios on Crack Growth Rate in AM60B Magnesium Alloy
,”
Mater. Sci. Eng. A
,
545
, pp.
68
77
. 10.1016/j.msea.2012.02.091
23.
Huang
,
X.
, and
Moan
,
T.
,
2007
, “
Improved Modeling of the Effect of R-Ratio on Crack Growth Rate
,”
Int. J. Fatigue
,
29
(
4
), pp.
591
602
. 10.1016/j.ijfatigue.2006.07.014
24.
Dowling
,
N. E.
,
2013
,
Mechanical Behavior of Materials
,
Pearson
,
Edinburgh
.
25.
Bozic
,
Z.
,
Schmauder
,
S.
,
Mlikota
,
M.
, and
Hummel
,
M.
,
2014
, “
Multiscale Fatigue Crack Growth Modelling for Welded Stiffened Panels
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
9
), pp.
1043
1054
. 10.1111/ffe.12189
26.
Bozic
,
Z.
,
Schmauder
,
S.
, and
Wolf
,
H.
,
2018
, “
The Effect of Residual Stresses on Fatigue Crack Propagation in Welded Stiffened Panels
,”
Eng. Failure Anal.
,
84
(
1
), pp.
346
357
. 10.1016/j.engfailanal.2017.09.001
You do not currently have access to this content.