Abstract

For wave exciting load on offshore structures, Froude–Kyrlov (FK) force is easier to evaluate than diffracting force. But current nonlinear FK models suffer low computational speed. Conventionally, FK force is calculated by performing Gaussian quadrature (GQ) on each surface mesh, and the choice of the mesh size is important in order to resolve wave characteristics both in the propagation and depth directions. Therefore, either by limiting the size of a surface mesh under one-tenth of the wavelength or increasing the order of GQ, numerical errors can be minimized. For the purpose of relieving the above restriction, the analytical integration of the dynamic pressure field in the time domain over a triangular mesh is derived to avoid the mesh-dependent errors and to improve computational efficiency. It will be shown that the solution of integration obtained in time domain can be cast in the frequency domain under linearized free surface conditions. Validation includes the analytical solution to a cuboid at head sea and numerical solutions to a catamaran by commercial software. The results show excellent agreement for general wave conditions and prominence at very high-frequency range. In terms of computational efficiency, we compared the execution time against GQ with different orders and showed the analytical method is significantly faster. The limitation of this method is in very long waves or for degenerated panels, which are specifically addressed by line integration.

References

1.
Tezdogan
,
T.
,
Demirel
,
Y. K.
,
Kellett
,
P.
,
Khorasanchi
,
M.
,
Incecik
,
A.
, and
Turan
,
O.
,
2015
, “
Full-scale Unsteady RANS CFD Simulations of Ship Behaviour and Performance in Head Seas Due to Slow Steaming
,”
Ocean Eng.
,
97
, pp.
186
206
. 10.1016/j.oceaneng.2015.01.011
2.
Sessarego
,
M.
,
Shen
,
W. Z.
,
Paul Van der Laan
,
M.
,
Hansen
,
K. S.
, and
Zhu
,
W. J.
,
2018
, “
CFD Simulations of Flows in a Wind Farm in Complex Terrain and Comparisons to Measurements
,”
Appl. Sci.
,
8
(
5
), p.
788
. 10.3390/app8050788
3.
Reddy
,
K. R.
,
Toffoletto
,
R.
, and
Jones
,
K. R. W.
,
2000
, “
Numerical Simulation of Ship Airwake
,”
Comput. Fluids
,
29
(
4
), pp.
451
465
. 10.1016/S0045-7930(99)00033-X
4.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin Heidelberg
.
5.
Taylor
,
C.
, and
Hughes
,
T. G.
,
1981
,
Finite Element Programming of the Navier-Stokes Equations
,
Pineridge Press
,
Swansea, U.K
.
6.
Liu
,
K. S.
,
Sheu
,
Tony W. H.
,
Hwang
,
Y. H.
, and
Ng
,
K. C.
,
2017
, “
High-Order Particle Method for Solving Incompressible Navier–Stokes Equations Within a Mixed Lagrangian–Eulerian Framework
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
77
101
. 10.1016/j.cma.2017.07.001
7.
Liu
,
R. K. S.
,
Ng
,
K. C.
, and
Sheu
,
Tony W. H.
,
2019
, “
A New High-Order Particle Method for Solving High Reynolds Number Incompressible Flows
,”
Comput. Particle Mech.
,
6
, pp.
343
370
. 10.1007/s40571-018-00217-w
8.
Kinnas
,
S. A.
, and
Hsin
,
C. Y.
,
1992
, “
Boundary Element Method for the Analysis of the Unsteady Flow Around Extreme Propeller Geometries
,”
AIAA J.
,
30
(
3
), pp.
688
696
. 10.2514/3.10973
9.
Netzband
,
S.
,
Schulz
,
C. W.
,
Göttsche
,
U.
,
González
,
D. F.
, and
Abdel-Maksoud
,
M.
,
2018
, “
A Panel Method for Floating Offshore Wind Turbine Simulations With Fully Integrated Aero- and Hydrodynamic Modelling in Time Domain
,”
Ship Technol. Res.
,
65
(
3
), pp.
123
136
. 10.1080/09377255.2018.1475710
10.
Sen
,
D.
,
2002
, “
Time-Domain Computation of Large Amplitude 3D Ship Motions With Forward Speed
,”
Ocean Eng.
,
29
(
8
), pp.
973
1002
. 10.1016/S0029-8018(01)00041-5
11.
Hess
,
J. L.
, and
Smith
,
A. M. O.
,
1967
, “
Calculation of Potential Flow About Arbitrary Bodies
,”
Progress Aeros. Sci.
,
8
, pp.
1
138
. 10.1016/0376-0421(67)90003-6
12.
Heo
,
K. u.
,
Koo
,
W.
,
Park
,
I.-K.
, and
Ryue
,
J.
,
2016
, “
Quadratic Strip Theory for High-Order Dynamic Behavior of a Large Container Ship With 3D Flow Effects
,”
Int. J. Naval Arch. Ocean Eng.
,
8
(
2
), pp.
127
136
. 10.1016/j.ijnaoe.2015.11.001
13.
Kim
,
S.
,
Ryue
,
J.
, and
Park
,
I.-K.
,
2018
, “
Prediction of the Wave Induced Second Order Vertical Bending Moment Due to the Variation of the Ship Side Angle by Using the Quadratic Strip Theory
,”
Int. J. Naval Arch. Ocean Eng.
,
10
(
3
), pp.
259
269
. 10.1016/j.ijnaoe.2017.07.002
14.
Singh
,
S. P.
, and
Sen
,
D.
,
2007
, “
A Comparative Linear and Nonlinear Ship Motion Study Using 3D Time Domain Methods
,”
Ocean Eng.
,
34
(
13
), pp.
1863
1881
. 10.1016/j.oceaneng.2006.10.016
15.
Faltinsen
,
O. M.
,
1975
,
Motions of Large Structures in Waves At Zero Froude Number
, Vol.
90
,
Det Norske Veritas
,
Etterstad, Oslo, Norway
.
16.
Giorgi
,
G.
, and
Ringwood
,
J. V.
,
2018
, “
Analytical Representation of Nonlinear Froude-Krylov Forces for 3-DoF Point Absorbing Wave Energy Devices
,”
Ocean Eng.
,
164
, pp.
749
759
. 10.1016/j.oceaneng.2018.07.020
17.
Giorgi
,
G.
, and
Ringwood
,
J. V.
,
2018
, “
Articulating Parametric Resonance for an OWC Spat Buoy in Regular and Irregular Waves
,”
J. Ocean Eng. Marine Energy
,
4
, pp.
311
322
. 10.1007/s40722-018-0124-z
18.
Rodrigues
,
J. M.
, and
Soares
,
C. G.
,
2014
, “
Exact Pressure Integrations on Submerged Bodies in Waves Using a Quadtree Adaptive Mesh Algorithm
,”
Int. J. Numer. Methods Fluids
,
76
(
10
), pp.
632
652
. 10.1002/fld.3948
19.
Gilloteaux
,
J.-C.
,
Babarit
,
A.
,
Ducrozet
,
G.
,
Durand
,
M.
, and
Clment
,
A. H.
,
2007
, “
A Non-linear Potential Model to Predict Large-Amplitudes-Motions: Application to the SEAREV Wave Energy Converter
,”
26th International Conference on Offshore Mechanics and Arctic Engineering
,
San Diego, CA
, pp.
529
535
.
20.
Edelsbrunner
,
H.
,
2001
,
Geometry and Topology for Mesh Generation
(
Cambridge Monographs on Applied and Computational Mathematics
),
Cambridge University Press
.
21.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1991
,
Water Wave Mechanics for Engineers and Scientists
,
World Scientific
,
5 Toh Tuck Link, Singapore
.
22.
Tong
,
J.
,
Lin
,
T. Y.
,
Shih
,
M. M.
, and
Kouh
,
J. S.
,
2018
, “
An Alternative Method for Computing Hydrostatic Performances of a Floating Body With Arbitrary Geometrical Configurations
,”
Ocean Eng.
,
160
, pp.
301
310
. 10.1016/j.oceaneng.2018.03.036
You do not currently have access to this content.