Abstract

Roll motion of a planing hull can be easily triggered at high speeds, causing a significant change in hydrodynamic pressure pattern, which can threaten the stability of the vessel. Modeling and investigating roll motion of a planing vessel may require a strong coupling between motions in vertical and transverse planes. In the present paper, we have used a mathematical model to analyze the roll of a planing hull by coupling surge, heave, pitch, and roll motions using 2D + T theory to study the effects of roll-induced vertical motions on roll coefficients and response. Mathematically computed forces and moments as well as roll dynamic response of the vessel are seen to be in fair quantitative agreement with experimentally measured values of previously published data. Using the 2D + T method, it has been shown that to model the roll of a planing hull at high speeds, we need to consider the effects of heave, pitch, and surge motions. Through our mathematical modeling, it is found that freedom in vertical motions increases time-dependent roll damping and added mass coefficients, especially at early planing speeds. The results of dynamic response simulations suggest that freedom in the vertical plane can decrease the roll response.

References

1.
Tavakoli
,
S.
, and
Dashtimanesh
,
A.
,
2018
, “
Running Attitudes of Yawed Planing Hull in Calm Water: Development of an Oblique 2d+t Theory
,”
Ships and Offshore Struct.
,
12
(
8
), pp.
1086
1099
. 10.1080/17445302.2017.1316555
2.
Katayama
,
T.
, and
Ikeda
,
Y.
,
1996
, “
A Study on Unstable Rolling Induced by Pitching of Planing Crafts at High Advance Speeds
,”
J. Kansai Soc. Nav. Archit.
,
225
(
228
), pp.
141
148
.
3.
Ikeda
,
Y.
, and
Katayama
,
T.
,
2000
, “
Roll Damping Prediction Method for Ahigh-Speed Planing Craft
,”
Proceeding of the 7th Stability of Ships and Ocean Vehicles Conference
,
Launceston, Australia
,
Feb. 7–11
.
4.
Zarnick
,
E. E.
,
1978
, “
A Non-Linear Mathematical Model of Motions of Planing Boat in Regular Waves
,” Technical Report DTNSRDC-78/032,
David W. Taylor Naval Ship Research and Development
,
Bethesda, MD
.
5.
Tavakoli
,
S.
, and
Dashtimanesh
,
A.
,
2018
, “
Mathematical Simulation for Planar Motion Mechanism Test for Planing Hulls by Using 2d+t Theory
,”
Ocean Eng.
,
169
, pp.
651
672
. 10.1016/j.oceaneng.2018.09.045
6.
Savitsky
,
D.
,
1964
, “
Hydrodynamic Design of Planing Hulls
,”
Mar. Technol.
,
1
(
04
), pp.
71
95
.
7.
Ghadimi
,
P.
,
Tavakoli
,
S.
,
Feizi-Chekab
,
M. A.
, and
Dashtimanesh
,
A.
,
2015
, “
Introducing a Particular Mathematical Model for Predicting the Resistance and Performance of Prismatic Planing Hulls in Calm Water by Means of Total Pressure Distribution
,”
J. Nav. Archit. Mar. Eng.
,
12
(
2
), pp.
73
94
. 10.3329/jname.v12i2.22351
8.
Broglia
,
R.
, and
Iafrati
,
A.
,
2010
, “
Hydrodynamic of Planing Hulls in Asymmetric Conditions
,”
Proceeding of the 28th Symposium in Naval Hydro-Dynamics
,
Arlington, VA
,
Sept. 12–17
.
9.
Begovic
,
E.
,
Bertorello
,
C.
, and
Orscic
,
J.
,
2013
, “
Roll Damping Coefficient of Round Bildge and Hard-Chine Hullforms
,”
Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering, Odd. M. Faltinsen Honoring Symposium on Marine Hydrodynamics
,
Nantes, France
,
June 9–14
.
10.
Judge
,
C.
, and
Judge
,
J.
,
2013
, “
Measurements of Hydrodynamic Coefficients on a Planing Hull Using Forced Roll Oscillations
,”
J. Ship Res.
,
57
(
2
), pp.
112
124
. 10.5957/JOSR.57.2.120020
11.
Tavakoli
,
S.
,
Najafi
,
S.
,
Amini
,
E.
, and
Dashtimanesh
,
A.
,
2018
, “
Performance of High-Speed Planing Hulls Accelerating From Rest Under the Action of a Surface Piercing Propeller and an Outboard Engine
,”
Appl. Ocean Res.
,
77
. 10.1016/j.apor.2018.05.004
12.
Mancini
,
S.
,
Begovic
,
E.
,
Day
,
A. H.
, and
Incecik
,
A.
,
2018
, “
Verification and Validation of Numerical Modelling of DTMB 5415 Roll Decay
,”
Ocean Eng.
,
162
, pp.
209
223
. 10.1016/j.oceaneng.2018.05.031
13.
Ghadimi
,
P.
,
Tavakoli
,
S.
, and
Dashtimanesh
,
A.
,
2016
, “
An Analytical Procedure for Time Domain Simulation of Roll Motion of the Warped Planing Hulls
,”
Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ.
,
230
(
4
), pp.
600
615
. 10.1177/1475090215613536
14.
Tavakoli
,
S.
,
Ghadimi
,
P.
,
Dashtimanesh
,
A.
, and
Sahoo
,
P. K.
,
2015
, “
Determination of Hydrodynamic Coefficients in Roll Motion of High-Speed Planing Hulls
,”
Proceeding of the 13th International Conference on Fast Sea Transportation
,
Washington, DC
,
Sept. 1–4
.
15.
Sun
,
H.
, and
Faltinsen
,
O. M.
,
2012
, “
Hydrodynamic Forces on a Semi-displacement Ship at High Speed
,”
Appl. Ocean Res.
,
34
, pp.
68
77
. 10.1016/j.apor.2011.10.001
16.
Payne
,
P. R.
,
1995
, “
Contributions to Planing Theory
,”
Ocean Eng.
,
22
(
7
), pp.
699
729
. 10.1016/0029-8018(94)00033-4
17.
Xu
,
L.
,
Trosch
,
A. W.
, and
Peterson
,
R.
,
1999
, “
Asymmetric Hydrodynamic Impact and Dynamic Response of the Vessels
,”
ASME J. Offshore Mech. Arct. Eng.
,
121
(
2
), pp.
83
89
. 10.1115/1.2830082
18.
Tavakoli
,
S.
,
Dashtimanesh
,
A.
, and
Sahoo
,
P. K.
,
2018
, “
An Oblique 2D+t Approach for Hydrodynamic Modeling of Yawed Planing Boats in Calm Water
,”
J. Ship. Prod. Des.
,
34
(
4
), pp.
335
346
. 10.5957/JSPD.160032
19.
Qin
,
H.
,
Zhao
,
L.
, and
Sing
,
J.
,
2001
, “
A Modified Logvinovich Model for Hydrodynamic Loads on an Asymmetric Wedge Entering Water With a Roll Motion
,”
J. Mar. Sci. Appl.
,
10
, pp.
184
189
. 10.1007/s11804-011-1058-1
20.
Tavakoli
,
S.
,
Ghadimi
,
P.
, and
Dashtimanesh
,
A.
,
2017
, “
A Nonlinear Mathematical Model for Coupled Heave, Pitch and Roll Motions of a High-Speed Planing Hull
,”
J. Eng. Math.
,
104
(
1
), pp.
157
194
. 10.1007/s10665-016-9878-2
21.
Greco
,
M.
,
Lugni
,
C.
, and
Faltinsen
,
O. M.
,
2015
, “
Influence of Motion Coupling and Nonlinear Effects on Parametric Roll for a Floating Production Storage and Offloading Platform
,”
Philos. Trans. R. Soc. London, Ser. A
,
373
(
2014040110
), pp.
1
18
. 10.1098/rsta.2014.0110
22.
Bilandi
,
R. N.
,
Dashtimanesh
,
A.
, and
Zamanain
,
R.
,
2019
, “
Development of a 2D+t Theory for Performance Prediction of Double-Stepped Planing Hulls in Calm Water
,”
Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ.
,
233
(
3
), pp.
886
904
. 10.1177/1475090218797784
23.
Dashtimanesh
,
A.
,
Enshaei
,
H.
, and
Tavakoli
,
S.
,
2019
, “
Oblique-Asymmetric 2d+t Model to Compute Hydrodynamic Forces and Moments in Coupled Sway, Roll and Yaw Motions of Planing Hulls
,”
J. Ship Res.
,
63
(
1
), pp.
1
15
. 10.5957/JOSR.12170079
24.
Ghadimi
,
P.
,
Tavakoli
,
S.
,
Dashtimanesh
,
A.
, and
Pirooz
,
A.
,
2014
, “
Developing a Computer Program for Detailed Study of Planing Hull’s Spray Based on Morabito’s Approach
,”
J. Mar. Sci. Appl.
,
13
(
4
), pp.
402
415
. 10.1007/s11804-014-1280-8
25.
Garme
,
K.
,
2005
, “
Improved Time Domain Simulation of Planing Hulls on Waves by Correction of Near Transom Lift
,”
Int. Shipbuild. Prog.
,
50
(
3
), pp.
177
208
.
26.
Savitsky
,
D.
,
Prowse
,
R. E.
, and
Lueders
,
H.
,
1958
, “
High-Speed Hydrodynamic Characteristics of a Flat Plate and 20 Degrees Dead-Rise Surface in Unsymmetrical Planing Conditions
,”
Technical Note 4187, National Advisory Committee for Aeronautics
,
Washington DC
.
27.
Balsamo
,
F. V.
,
Milanesi
,
S.
, and
Pensa
,
C.
,
2001
, “
Roll Dynamic in Planing and Semi-planing Range
,”
Proceeding of the 6th International Conference on Fast Sea Transportation
,
Southampton, UK
,
Sept. 4–6
.
28.
Judge
,
C.
,
2014
, “
Empirical Methods for Predicting Lift and Heel Moment for a Heeled Planing Hull
,”
J. Ship. Prod. Des.
,
30
(
4
), pp.
175
183
. 10.5957/jspd.2014.30.4.175
29.
Morabito
,
M. G.
,
2015
, “
Prediction of Planing Hull Side Force in Yaw Using Slender Body Oblique Impact Theory
,”
Ocean Eng.
,
101
, pp.
45
57
. 10.1016/j.oceaneng.2015.04.014
You do not currently have access to this content.