Abstract

Large ocean waves with large wave height may destroy the ship’s structure, whereas it is difficult to predict the nonlinear dynamic strength in the large waves. In this study, we used a nonlinear simulation based on boundary element method (BEM)-finite element method (FEM) and a collapse experiment of ship model to study dynamic ultimate strength and dynamic course of collapse of ship structure, the collapse test was performed in regular tank wave. Besides, a simulation method for nonlinear dynamic ship strength was proposed to predict and compare the results of collapse test. A collapsed model consisting of a plastic hinge and two ship strips is designed. Subsequently, we performed the nonlinear simulation of the ultimate strength of ship model induced by tank wave. Wave loads were calculated following potential theory and BEM. Next, ship structural FEM model was modeled, the ship pressure was transferred to ship wet surface elements, and inertia force was exerted as well. Finally, the nonlinear dynamic strength calculation of ship model was performed in accordance with nonlinear FEM. A four-point-bending test adopted displacement controlling method was designed to obtain the hysteresis characteristic of the elastoplastic hinge. Hysteretic test and simulation analysis was performed to determine post-ultimate bending moment. Time-domain computational results including rotation angle history and vertical bending moment are close to collapse test results so that the two methods are verified. This study verifies that structural nonlinearities of ship structure induced by wave loads could be predicted.

References

1.
Kharif
,
C.
, and
Pelinovsky
,
E.
,
2003
, “
Physical Mechanisms of the Rogue Wave Phenomenon
,”
Eur. J. Mech.-B/Fluids
,
22
(
6
), pp.
603
634
. 10.1016/j.euromechflu.2003.09.002
2.
Müller
,
P.
,
Garrett
,
C.
, and
Osborne
,
A.
,
2005
, “
Rogue Waves-the Fourteenth ‘aha Huliko'a Hawaiian Winter Workshop
,”
Oceanography
,
18
(
3
), pp.
66
75
. 10.5670/oceanog.2005.30
3.
Laffon
,
B.
,
Rábade
,
T.
,
Pásaro
,
E.
, and
Méndez
,
J.
,
2006
, “
Monitoring of the Impact of Prestige oil Spill on Mytilus Galloprovincialis From Galician Coast
,”
Environ. Int.
,
32
(
3
), pp.
342
348
. 10.1016/j.envint.2005.07.002
4.
Class
,
N. K.
,
2014
,
Investigation Report on Structural Safety of Large Container Ships
,
Class NK
,
Tokyo
.
5.
Yamamoto
,
Y.
,
Fujino
,
M.
, and
Fukasawa
,
T.
,
1978
, “
Motion and Longitudinal Strength of a Ship in Head Sea and the Effects of Non-Linearities
,”
J. Soc. Nav. Archit. Jpn.
,
1978
(
143
), pp.
179
187
. 10.2534/jjasnaoe1968.1978.179
6.
Senjanović
,
I.
,
Tomašević
,
S.
, and
Vladimir
,
N.
,
2009
, “
An Advanced Theory of Thin-Walled Girders With Application to Ship Vibrations
,”
Mar. Struct.
,
22
(
3
), pp.
387
437
. 10.1016/j.marstruc.2009.03.004
7.
Iijima
,
K.
,
Yao
,
T.
, and
Moan
,
T.
,
2008
, “
Structural Response of a Ship in Severe Seas Considering Global Hydroelastic Vibrations
,”
Mar. Struct.
,
21
(
4
), pp.
420
445
. 10.1016/j.marstruc.2008.03.003
8.
Shi
,
J.
,
Waseda
,
T.
,
Kinoshita
,
T.
, and
Suzuki
,
K.
,
2007
, “
Structural and Motion Responses on Large Container Ships in Freak Waves
,”
Proceedings of a Symposium Held at Research Institute for Applied Mechanics, Paper No. 06
,
Fukuoka, Japan
.
9.
Reilhac
,
P. R. D.
,
Bonnefoy
,
F.
,
Rousset
,
J. M.
, and
Ferrant
,
P.
,
2011
, “
Improved Transient Water Wave Technique for the Experimental Estimation of Ship Responses
,”
J. Fluids Struct.
,
27
(
3
), pp.
456
466
. 10.1016/j.jfluidstructs.2011.01.002
10.
Jin
,
Y.
,
Chai
,
S.
,
Duffy
,
J.
,
Chin
,
C.
, and
Bose
,
N.
,
2017
, “
URANS Predictions of Wave Induced Loads and Motions on Ships in Regular Head and Oblique Waves at Zero Forward Speed
,”
J. Fluids Struct.
,
74
, pp.
178
204
. 10.1016/j.jfluidstructs.2017.07.009
11.
Ciappi
,
E.
,
Magionesi
,
F.
,
Rosa
,
S. D.
, and
Franco
,
F.
,
2009
, “
Hydrodynamic and Hydroelastic Analyses of a Plate Excited by the Turbulent Boundary Layer
,”
J. Fluids Struct.
,
25
(
2
), pp.
321
342
. 10.1016/j.jfluidstructs.2008.04.006
12.
Liu
,
W.
,
Suzuki
,
K.
, and
Shibanuma
,
K.
,
2015
, “
Nonlinear Dynamic Response and Structural Evaluation of Container Ship in Large Freak Waves
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
1
), p.
011601
. 10.1115/1.4028506
13.
Pei
,
Z.
,
Iijima
,
K.
,
Fujikubo
,
M.
,
Tanaka
,
S.
,
Okazawa
,
S.
, and
Yao
,
T.
,
2015
, “
Simulation on Progressive Collapse Behaviour of Whole Ship Model Under Extreme Waves Using Idealized Structural Unit Method
,”
Mar. Struct.
,
40
(
1
), pp.
104
133
. 10.1016/j.marstruc.2014.11.002
14.
Liu
,
W.
,
Song
,
X.
,
Pei
,
Z.
, and
Li
,
Y.
,
2017
, “
Experiment Study of Hydroelasto-Buckling Ship Model in a Single Wave
,”
Ocean Eng.
,
142
(
1
), pp.
102
114
. 10.1016/j.oceaneng.2017.06.044
15.
Iijima
,
K.
,
Kimura
,
K.
,
Xu
,
W.
, and
Fujikubo
,
M.
,
2011
, “
Hydroelasto-Plasticity Approach to Predicting the Post-Ultimate Strength Behavior of a Ship’s Hull Girder in Waves
,”
J. Mar. Sci. Technol.
,
16
(
4
), pp.
379
389
. 10.1007/s00773-011-0142-1
16.
Xu
,
W.
,
Iijima
,
K.
,
Wada
,
R.
, and
Fujikubo
,
M.
,
2012
, “
Experimental Evaluation of the Post-Ultimate Strength Behavior of a Ship’s Hull Girder in Waves
,”
J. Mar. Sci. Appl.
,
11
(
1
), pp.
34
43
. 10.1007/s11804-012-1103-8
17.
Iijima
,
K.
,
Suzaki
,
Y.
, and
Fujikubo
,
M.
,
2014
, “
Scaled Model Tests for the Post-Ultimate Strength Collapse Behaviour of a Ships Hull Girder Under Whipping Loads
,”
Ships Offshore Struct.
,
10
(
1
), pp.
31
38
. 10.1080/17445302.2013.870774
18.
Iijima
,
K.
, and
Fujikubo
,
M.
,
2015
, “
Cumulative Collapse of a Ship Hull Girder Under a Series of Extreme Wave Loads
,”
J. Mar. Sci. Technol.
,
20
(
3
), pp.
530
541
. 10.1007/s00773-015-0308-3
19.
Belostosky
,
A. M.
,
Akimov
,
P. A.
,
Kaytukov
,
T. B.
,
Afanasyeva
,
I. N.
,
Usmanov
,
A. R.
,
Scherbina
,
S. V.
, and
Vershinin
,
V. V.
,
2014
, “
About Finite Element Analysis of Fluid-Structure Interaction Problems
,”
Procedia Eng.
,
20
(
2
), pp.
37
42
. 10.1016/j.proeng.2014.12.008
20.
Belostotskiy
,
A. M.
,
Akimov
,
P. A.
,
Afanasyeva
,
I. N.
,
Usmanov
,
A. R.
,
Scherbina
,
S. V.
, and
Vershinin
,
V. V.
,
2015
, “
Numerical Simulation of oil Tank Behavior Under Seismic Excitation. Fluid-Structure Interaction Problem Solution
,”
Procedia Eng.
,
78
(
1
), pp.
115
120
. 10.1016/j.proeng.2015.07.064
21.
Pietropaoli
,
E.
,
2012
, “
Progressive Failure Analysis of Composite Structures Using a Constitutive Material Model (Usermat) Developed and Implemented in Ansys
,”
Appl. Compos. Mater.
,
19
(
3–4
), pp.
657
668
. 10.1007/s10443-011-9220-0
22.
Paik
,
J. K.
, and
Sohn
,
J. M.
,
2012
, “
Effects of Welding Residual Stresses on High Tensile Steel Plate Ultimate Strength: Nonlinear Finite Element Method Investigations
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
2
), pp.
46
51
. 10.1115/1.4004510
23.
Nahin
,
P. J.
,
2001
, “
An Imaginary Tale: the Story of √−1
,”
Eur. J. Phys.
,
10
(
6
), pp.
497
501
.
24.
Salvensen
,
N.
,
Tuck
,
E. O.
, and
Faltinsen
,
O.
,
1970
, “
Ship Motion and sea Loads
,”
Trans. SNAME
,
78
, pp.
250
287
.
25.
Rossell
,
H. E.
, and
Lawrence
,
B.
,
1942
,
Principles of Naval Architecture, Society of Naval Architects and Marine Engineers
,
E. V.
Lewis
, ed.,
Society of Naval Architects and Marine Engineers
,
New York
,
1
.
26.
Crisfield
,
M. A.
,
1981
, “
A Fast Incremental/Iterative Solution Procedure That Handles “Snap-Through
,””
Comput. Methods Nonlinear Struct. Solid Mech.
,
13
(
1–3
), pp.
55
62
. 10.1016/B978-0-08-027299-3.50009-1
27.
Wang
,
L.
,
2005
, “
Influence of Aging on Mechanical Properties and Damping Behavior of Several Aluminum Alloy
,”
Light Alloy Fabr. Technol.
,
33
(
1
), pp.
47
50
.
You do not currently have access to this content.