Abstract

As the development of offshore oil and gas continues to move into deeper waters, the risers connecting the seabed infrastructure to the offshore platform are getting longer. This means that vortex-induced vibration (VIV) may occur at different frequencies along the riser due to current variation, making the VIV prediction challenging. To increase the VIV prediction accuracy, an empirical time-domain VIV model has been developed. The advantage of the model is that it can account for structural non-linearities such as variable tension and time-varying flow. The robustness of the time-domain VIV model has been verified with respect to the several tests, but the length/diameter (L/D) ratio of the risers used in the experiments has so far been relatively small, and the response mode number accordingly low. Therefore, additional validation is needed to understand the uncertainties for the prediction of VIV for deep-sea riser systems at high-mode order. The purpose of the present study was to evaluate the use of time-domain model for high-mode VIV response prediction of deep-sea riser systems. This was done by a comparison study applying the Hanøytangen high-mode VIV test data. The main comparison was made regarding the dominating frequency and fatigue damage estimation. For selected empirical parameters, the model demonstrated a good correlation with the experiments. However, the simplified riser model that was utilized in the simulations caused some discrepancies between numerical simulations and the experimental results, which need to be further investigated.

References

1.
Sarpkaya
,
T.
,
2004
, “
A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
4
), pp.
389
447
. 10.1016/j.jfluidstructs.2004.02.005
2.
DNV GL
,
2017
,
Recommended Practice-F204: Riser Fatigue
,
Technical Report
,
Det Norske Veritas and Germanischer Lloyd
,
Oslo, Norway
.
3.
Larsen
,
C. M.
,
Lie
,
H.
,
Passano
,
E.
,
Yttervik
,
R.
,
Wu
,
J.
, and
Baarholm
,
G. S.
,
2017
,
VIVANA-Theory Manual, Version 4.10.1
,
SINTEF Ocean
,
Trondheim, Norway
.
4.
Vandiver
,
J. K.
, and
Li
,
L.
,
2005
,
SHEAR7 V4.4 Program Theoretical Manual
,
Department of Ocean Engineering, Massachusetts Institute of Technology
,
Cambridge, MA
.
5.
Triantafyllou
,
M.
,
Triantafyllou
,
G.
,
Tein
,
Y. S. D.
, and
Ambrose
,
B. D.
,
1999
, “
Pragmatic Riser VIV Analysis
,”
Offshore Technology Conference, Paper No. OTC-10931-MS
.
6.
Facchinetti
,
M. L.
,
Langre
,
E. D.
, and
Biolley
,
F.
,
2004
, “
Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
2
), pp.
123
140
. 10.1016/j.jfluidstructs.2003.12.004
7.
Ogink
,
R. H. M.
, and
Metrikine
,
A. V.
,
2010
, “
A Wake Oscillator With Frequency Dependent Coupling for the Modeling of Vortex-Induced Vibration
,”
J. Sound Vib.
,
329
(
26
), pp.
5452
5473
. 10.1016/j.jsv.2010.07.008
8.
Srinil
,
N.
, and
Zanganeh
,
H.
,
2012
, “
Modelling of Coupled Cross-Flow/In-Line Vortex-Induced Vibrations Using Double Duffing and Van Der Pol Oscillators
,”
Ocean Eng.
,
53
, pp.
83
97
. 10.1016/j.oceaneng.2012.06.025
9.
Xue
,
H.
,
Wang
,
K.
, and
Tang
,
W.
,
2015
, “
A Practical Approach to Predicting Cross-Flow and In-Line VIV Response for Deepwater Risers
,”
Appl. Ocean Res.
,
52
, pp.
92
101
. 10.1016/j.apor.2015.05.005
10.
Yuan
,
Y.
,
Xue
,
H.
, and
Tang
,
W.
,
2017
, “
An Improved Time Domain Coupled Model of Cross-Flow and In-Line Vortex-Induced Vibration for Flexible Risers
,”
Ocean Eng.
,
136
, pp.
117
128
. 10.1016/j.oceaneng.2017.03.018
11.
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2014
, “
A Simplified Method for Time Domain Simulation of Cross-Flow Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
49
, pp.
135
148
. 10.1016/j.jfluidstructs.2014.04.006
12.
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2016
, “
Time Domain Simulation of Vortex-Induced Vibrations in Stationary and Oscillating Flows
,”
J. Fluids Struct.
,
61
, pp.
1
19
. 10.1016/j.jfluidstructs.2015.11.006
13.
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2017
, “
Non-Linear Time Domain Analysis of Cross-Flow Vortex-Induced Vibrations
,”
Mar. Struct.
,
51
, pp.
134
151
. 10.1016/j.marstruc.2016.10.007
14.
Ulveseter
,
J. V.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2017
, “
Time Domain Model for Calculation of Pure In-Line Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
68
, pp.
158
173
. 10.1016/j.jfluidstructs.2016.10.013
15.
Ulveseter
,
J. V.
,
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2018
, “
Time Domain Simulation of Riser VIV in Current and Irregular Waves
,”
Mar. Struct.
,
60
, pp.
241
260
. 10.1016/j.marstruc.2018.04.001
16.
Ulveseter
,
J. V.
,
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2019
, “
Simulating Fundamental and Higher Harmonic VIV of Slender Structures
,”
Appl. Ocean Res.
,
90
, p.
101856
. 10.1016/j.apor.2019.101856
17.
Larsen
,
C. M.
,
Zhao
,
Z.
, and
Lie
,
H.
,
2012
, “
Frequency Components of Vortex Induced Vibrations in Sheared Current
”,
ASME Paper No. OMAE2012-83092
.
18.
Voie
,
P. E.
,
Larsen
,
C. M.
,
Wu
,
J.
, and
Resvanis
,
T.
,
2016
,
VIV BEST PRACTICE: Guideline on Analysis of Vortex-Induced Vibrations in Risers and Umbilicals
,
Technical Report
,
Det Norske Veritas and Germanischer Lloyd
,
Oslo, Norway
.
19.
Passano
,
E.
,
Larsen
,
C. M.
, and
Wu
,
J.
,
2014
,
On the Prediction of Fatigue Damage from VIV
,
ASME Paper No. OMAE2014-24217
.
20.
Baarholm
,
G. S.
,
Larsen
,
C. M.
, and
Lie
,
H.
,
2006
, “
On Fatigue Damage Accumulation From In-Line and Cross-Flow Vortex-Induced Vibrations on Risers
,”
J. Fluids Struct.
,
22
(
1
), pp.
109
127
. 10.1016/j.jfluidstructs.2005.07.013
21.
Huse
,
E.
,
1997
,
Large Scale Testing of Riser Models, Main Report. Tech. rep
.,
Norwegian Marine Technology Research Institute
,
Trondheim, Norway
.
22.
SINTEF Ocean
,
2017
,
RIFLEX V4.10.1 Theory Manual
.
Trondheim, Norway
.
23.
Blevins
,
R. D.
, and
Coughran
,
C. S.
,
2009
, “
Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number
,”
ASME J. Fluid. Eng.
,
131
(
10
), p.
101202
. 10.1115/1.3222904
24.
Swithenbank
,
S. B.
,
Vandiver
,
J. K.
,
Larsen
,
C. M.
, and
Lie
,
H.
,
2008
,
Reynolds Number Dependence of Flexible Cylinder VIV Response Data
.
ASME Paper No. OMAE2008-57045
.
25.
Drengsrud
,
H.
,
2019
, “
Systematic Evaluation of VIV Prediction for Riser With Partial Strake Coverage
,”
Master’s Thesis
,
Norwegian University of Science and Technology
,
Trondheim, Norway
.
26.
Braaten
,
H.
, and
Lie
,
H.
,
2005
,
NDP Riser High Mode VIV Tests Main Report
.
Technical Report
,
Norwegian Marine Technology Research Institute
,
Trondheim, Norway
.
27.
Vandiver
,
J. K.
,
Swithenbank
,
S. B.
,
Jaiswal
,
V.
, and
Jhingran
,
V.
,
2006
,
Fatigue Damage From High Mode Number Vortex-Induced Vibration
.
ASME Paper No. OMAE2006-92409
.
28.
Soni
,
P. K.
,
2008
, “
Hydrodynamic Coefficients for Vortex-Induced Vibrations of Flexible Beams
,”
Ph.D. thesis
,
Norwegian University of Science and Technology
,
Trondheim, Norway
.
29.
Huse
,
E.
,
2001
,
Ormen Lange 3D Model Tests Main Report
.
Technical Report
,
Norwegian Marine Technology Research Institute
,
Trondheim, Norway
.
30.
Huse
,
E.
,
Kleiven
,
G.
, and
Nielsen
,
F.
,
1999
, “
VIV-Induced Axial Vibrations in Deep Sea Risers
,”
Offshore Technology Conference, Paper NO. OTC-10932-MS
.
31.
Lie
,
H.
, and
Kaasen
,
K. E.
,
2006
, “
Modal Analysis of Measurements From a Large-Scale VIV Model Test of a Riser in Linearly Sheared Flow
,”
J. Fluids Struct.
,
22
(
4
), pp.
557
575
. 10.1016/j.jfluidstructs.2006.01.002
32.
Wu
,
J.
,
Yin
,
D.
,
Lie
,
H.
,
Larsen
,
C. M.
,
Baarholm
,
R. J.
, and
Liapis
,
S.
,
2019
, “
On the Significance of the Higher-Order Stress in Riser Vortex-Induced Vibrations Responses
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
1
), p.
011705
. 10.1115/1.4040798
33.
Wu
,
J.
,
Yin
,
D.
,
Lie
,
H.
,
Riemer-Sørensen
,
S.
,
Sævik
,
S.
, and
Triantafyllou
,
M.
,
2020
, “
Improved VIV Response Prediction Using Adaptive Parameters and Data Clustering
,”
J. Mar. Sci. Eng.
,
8
(
2
), p.
127
. 10.3390/jmse8020127
34.
Brodtkorb
,
P. A.
,
Johannesson
,
P.
,
Lindgren
,
G.
,
Rychlik
,
I.
,
Rydén
,
J.
, and
Sjö
,
E.
,
2000
,”
Wafo—a Matlab Toolbox for Analysis of Random Waves and Loads. International Offshore and Polar Engineering Conference
,
ISOPE-I-00-264
.
You do not currently have access to this content.