Abstract

The dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) are used to analyze the coherent structures of turbulent flow around vibrating isolated and piggyback cylinders configurations subjected to a uniform flow at a laminar Reynolds number (Re = 200) and a upper transition Reynolds number (Re = 3.6 × 106). Numerical simulations using two-dimensional unsteady Reynolds-averaged Navier–Stokes (URANS) approach with the k − ω shear stress transport turbulence model are used to obtain the flow fields snapshots for the analysis. The wake flows behind the cylinders are decomposed into energy optimal modes (POD modes) and dynamical relevant modes (DMD modes). A reduced-order model (ROM) for the flow is built based on the modal analysis. A comparison of POD and DMD is performed to characterize their special features. The present study provides new insights into the flow physics of fluid–structure interaction problem of two coupled cylinders. The characteristic vortex shedding frequencies and their harmonics are identified by DMD modes in all the investigated configurations. It is observed that for single cylinder configurations, the most energetic and the most dynamically important mode is associated with the fundamental shedding frequency. For the stationary piggyback configuration, the gap flow between the cylinders appears to be a dominant flow feature as evidenced by the leading DMD modes. The cylinder vibration increases significantly number of modes necessary to obtain a ROM at the given level of accuracy compared to respective stationary configurations.

References

1.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
, 2nd ed.,
Van Nostrand Reinhold
,
New York
.
2.
Goswami
,
I.
,
Scanlan
,
R.
, and
Jones
,
N.
,
1993
, “
Vortex-Induced Vibrations of Circular Cylinders. I: Experimental Data
,”
J. Eng. Mech.
,
119
(
11
), pp.
2270
2287
. 10.1061/(ASCE)0733-9399(1993)119:11(2270)
3.
Blevins
,
R. D.
, and
Coughran
,
C. S.
,
2009
, “
Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number
,”
ASME. J. Fluids Eng.
,
131
(
10
), p.
101202
. 10.1115/1.3222904
4.
Jauvtis
,
N.
, and
Williamson
,
C. H. K.
,
2004
, “
The Effects of Two Degrees of Freedom on Vortex-Induced Vibration
,”
J. Fluid Mech.
,
509
, pp.
23
62
. 10.1017/S0022112004008778
5.
Govardhan
,
R.
, and
Williamson
,
C.
,
2000
, “
Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder
,”
J. Fluid Mech.
,
420
(
85
), p.
130
.
6.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2006
,
Hydrodynamics Around Cylindrical Structures
,
World Scientific
,
Singapore
.
7.
Lumley
,
J.
,
1967
, “The Structure of Inhomogeneous Turbulent Flows,”
Atmospheric Turbulence and Radio Wave Propagation
,
A.
Yaglom
, and
V.
Tatarsky
, eds.,
Nauka
,
Moscow
, pp.
166
178
.
8.
Taira
,
K.
,
Brunton
,
S.
,
Dawson
,
S.
,
Rowley
,
C.
,
Colonius
,
T.
,
McKeon
,
B.
,
Schmidt
,
O.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
. 10.2514/1.J056060
9.
Deane
,
A.
,
Kevrekidis
,
I.
,
Karniadakis
,
G.
, and
Orszag
,
S.
,
1991
, “
Low-Dimensional Models for Complex Geometry Flows: Application to Grooved Channels and Circular Cylinders
,”
Phys. Fluids A
,
3
(
10
), pp.
2337
2354
. 10.1063/1.857881
10.
Liberge
,
E.
, and
Hamdouni
,
A.
,
2010
, “
Reduced Order Modelling Method via Proper Orthogonal Decomposition (POD) for Flow Around an Oscillating Cylinder
,”
J. Fluids Struct.
,
26
(
2
), pp.
292
311
. 10.1016/j.jfluidstructs.2009.10.006
11.
Riches
,
G.
,
Martinuzzi
,
R.
, and
Morton
,
C.
,
2018
, “
Proper Orthogonal Decomposition Analysis of a Circular Cylinder Undergoing Vortex-Induced Vibrations
,”
Phys. Fluids
,
30
(
10
), p.
105103
. 10.1063/1.5046090
12.
Li
,
Z.
,
Jaiman
,
R.
, and
Khoo
,
B.
,
2017
, “
Coupled Dynamics of Vortex-Induced Vibration and Stationary Wall at Low Reynolds Number
,”
Phys. Fluids
,
29
(
9
), p.
093601
. 10.1063/1.4986410
13.
Miyanawala
,
T.
, and
Jaiman
,
R.
,
2019
, “
Decomposition of Wake Dynamics in Fluid–Structure Interaction via Low-Dimensional Models
,”
J. Fluid Mech.
,
867
, pp.
723
764
. 10.1017/jfm.2019.140
14.
Kostas
,
J.
,
Soria
,
J.
, and
Chong
,
M. S.
,
2005
, “
A Comparison Between Snapshot POD Analysis of PIV Velocity and Vorticity Data
,”
Exp. Fluids
,
38
(
2
), pp.
146
160
. 10.1007/s00348-004-0873-4
15.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
. 10.1017/S0022112010001217
16.
Jovanović
,
M.
,
Schmid
,
P.
, and
Nichols
,
J.
,
2014
, “
Sparsity-Promoting Dynamic Mode Decomposition
,”
Phys. Fluids
,
26
(
2
), p.
024103
. 10.1063/1.4863670
17.
Liu
,
B.
, and
Jaiman
,
R.
,
2016
, “
Interaction Dynamics of Gap Flow With Vortex-Induced Vibration in Side-by-Side Cylinder Arrangement
,”
Phys. Fluids
,
28
(
12
), p.
127103
. 10.1063/1.4968587
18.
Liu
,
B.
, and
Jaiman
,
R.
,
2018
, “
Dynamics and Stability of Gap-Flow Interference in a Vibrating Side-by-Side Arrangement of Two Circular Cylinders
,”
J. Fluid Mech.
,
855
, pp.
804
838
. 10.1017/jfm.2018.651
19.
Sipp
,
D.
,
de Pando
,
M. F.
, and
Schmid
,
P. J.
,
2020
, “
Nonlinear Model Reduction: A Comparison Between POD-Galerkin and POD-DEIM Methods
,”
Comput. Fluids
,
208
, p.
104628
. 10.1016/j.compfluid.2020.104628
20.
Astolfi
,
A.
,
2007
, “
A New Look at Model Reduction by Moment Matching for Linear Systems
,”
2007 46th IEEE Conference on Decision and Control
, pp.
4361
4366
.
21.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2010
, “
Nonlinear Model Order Reduction via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
. 10.1137/090766498
22.
Everson
,
R.
, and
Sirovich
,
L.
,
1995
, “
Karhunen–Loeve Procedure for Gappy Data
,”
J. Opt. Soc. Am. A
,
12
(
8
), pp.
1657
1664
. 10.1364/JOSAA.12.001657
23.
Carlberg
,
K.
,
Farhat
,
C.
,
Cortial
,
J.
, and
Amsallem
,
D.
,
2013
, “
The GNAT Method for Nonlinear Model Reduction: Effective Implementation and Application to Computational Fluid Dynamics and Turbulent Flows
,”
J. Comput. Phys.
,
242
, pp.
623
647
. 10.1016/j.jcp.2013.02.028
24.
Astrid
,
P.
,
Weiland
,
S.
,
Willcox
,
K.
, and
Backx
,
T.
,
2008
, “
Missing Point Estimation in Models Described by Proper Orthogonal Decomposition
,”
IEEE Trans. Automat. Control
,
53
(
10
), pp.
2237
2251
. 10.1109/TAC.2008.2006102
25.
Nguyen
,
N. C.
,
Patera
,
A. T.
, and
Peraire
,
J.
,
2008
, “
A Best Points Interpolation Method for Efficient Approximation of Parameterized Functions
,”
Int. J. Numer. Methods Eng.
,
73
(
4
), pp.
521
543
. 10.1002/nme.2086
26.
Li
,
Z.
,
Yao
,
W.
,
Yang
,
K.
,
Jaiman
,
R. K.
, and
Khoo
,
B. C.
,
2016
, “
On the Vortex-Induced Oscillations of a Freely Vibrating Cylinder in the Vicinity of a Stationary Plane Wall
,”
J. Fluids Struct.
,
65
, pp.
495
526
. 10.1016/j.jfluidstructs.2016.07.001
27.
Ong
,
M. C.
,
Utnes
,
T.
,
Holmedal
,
L. E.
,
Myrhaug
,
D.
, and
Pettersen
,
B.
,
2009
, “
Numerical Simulation of Flow Around a Smooth Circular Cylinder at Very High Reynolds Numbers
,”
Mar. Struct.
,
22
(
2
), pp.
142
153
. 10.1016/j.marstruc.2008.09.001
28.
Kang
,
Z.
,
Ni
,
W.
,
Zhang
,
X.
, and
Sun
,
L.
,
2017
, “
Two Improvements on Numerical Simulation of 2-dof Vortex-Induced Vibration With Low Mass Ratio
,”
China Ocean Eng.
,
31
(
6
), pp.
764
772
. 10.1007/s13344-017-0087-1
29.
Ferziger
,
J. H.
, and
Perič
,
M.
,
2013
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer
,
New York
.
30.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
31.
Menter
,
F.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Prediction
,”
Proceedings of 16th Brazilian Congress of Mechanical Engineering (COBEM)
, pp.
117
127
.
32.
Salim
,
S. M.
, and
Cheah
,
S. C.
,
2009
, “
Wall y+ Strategy for Dealing With Wall-Bounded Turbulent Flows
,”
Proceedings of the International MultiConference of Engineers and Computer Scientists, IMECS 2009
,
Hong Kong
,
Mar. 18–20
.
33.
Janocha
,
M.
,
Ong
,
M.
, and
Li
,
Z.
,
2020
, “
Vortex-Induced Vibrations of Two Cylinders With Different Diameters Close to a Horizontal Plane Boundary at Low Reynolds Number
,”
Eng. Struct.
,
204
, p.
109893
. 10.1016/j.engstruct.2019.109893
34.
Norberg
,
C.
,
2002
, “
Pressure Distributions Around a Circular Cylinder in Cross-Flow
,”
Proceedings of Symposium on Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV3)
,
K.
Hourigan
,
T.
Leweke
,
M.
Thompson
, and
C.
Williamson
, eds., pp.
1
4
.
35.
Achenbach
,
E.
,
1968
, “
Distribution of Local Pressure and Skin Friction Around a Circular Cylinder in Cross-Flow up to Re = 5 × 106
,”
J. Fluid Mech.
,
34
(
4
), pp.
625
639
. 10.1017/S0022112068002120
36.
Jones
,
G. W.
,
Cincotta
,
J. J.
, and
Robert
,
W. W.
,
1969
, “
Aerodynamic Forces on a Stationary and Oscillating Circular Cylinder at High Reynolds Numbers
,”
NASA, Technical Report TR R-300
.
37.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P.
,
2000
, “
Detached-Eddy Simulations Past a Circular Cylinder
,”
Flow, Turbul. Combust.
,
63
(
1
), pp.
293
313
. 10.1023/A:1009901401183
38.
Roshko
,
A.
,
1961
, “
Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number
,”
J. Fluid Mech.
,
10
(
3
), pp.
345
356
. 10.1017/S0022112061000950
39.
Schewe
,
G.
,
1983
, “
On the Force Fluctuations Acting on a Circular Cylinder in Crossflow From Subcritical up to Transcritical Reynolds Numbers
,”
J. Fluid Mech.
,
133
, pp.
265
285
. 10.1017/S0022112083001913
40.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2006
,
Hydrodynamics Around Cylindrical Structures
,
World Scientific
,
Singapore
.
You do not currently have access to this content.