Abstract

Marine flexible risers are widely used in ocean oil and gas extraction, and need to withstand environment loads (wave and current) and the large offset of the floater. Therefore, the flexible riser is subjected to tension, bending, and torsion loads, which are mainly resisted by the key strengthening layer. Small bending stiffness of a cross section of the strengthening layer with larger tension and torsion stiffness are required to be compliant with the ocean environment. The traditional design of the key strengthening layer is partially rigid with larger cross-sectional stiffnesses. Therefore, the innovative configurations of the strengthening layer are imperative to make sure that the flexible riser is reliable and safe during the installation and operation. The strengthening layer of the flexible riser is treated as the cylindrical shell composed of periodic unit-cell beam structures, which is a hypothetical model. The optimization design is conducted through the novel implementation of the asymptotic homogenization (NIAH) method. The multi-objective collaborative flexibility optimization formulation of cylindrical shell structure is proposed, considering the ratio of cross-sectional tensile torsion stiffness to bending stiffness of the strengthening layer as the objectives. The optimal configuration results, the helically wound structures, are obtained, which are the alternative strengthening components of flexible risers. Finally, the optimal structures are compared with the commonly used marine flexible riser, which gives a great verification of the methodology feasibility and explains why the strengthening layer is designed as the type of helically wound structure.

References

1.
APK, SPEC. 17J
,
2008
,
Specification for Unbonded Flexible Pipe
,
American Petroleum Institute
,
Washington, DC
.
2.
Guo
,
B.
,
Song
,
S.
,
Ghalambor
,
A.
, and
Tian
,
R. L.
,
2014
,
Offshore Pipelines Design, Installation, and Maintenance Second Edition
,
Elsevier
,
Holland, Amsterdam
.
3.
Bahtui
,
A.
,
Bahai
,
H.
, and
Alfano
,
G.
,
2008
, “
A Finite Element Analysis for Unbonded Flexible Risers Under Torsion
,”
ASME J. Offshore Mech. Arct. Eng.
,
30
(
4
), p.
041301
.
4.
Liu
,
Q.
,
Xue
,
H.
,
Tang
,
W.
, and
Yuan
,
Y.
,
2020
, “
Theoretical and Numerical Methods to Predict the Behaviour of Unbonded Flexible Riser With Composite Armour Layers Subjected to Axial Tension
,”
Ocean Eng.
,
199
, p.
107038
.
5.
Yang
,
Z. X.
,
Yan
,
J.
,
Svein
,
S.
,
Lu
,
Q.
, and
Yue
,
Q.
,
2021
, “
Integrated Optimisation Design of a Dynamic Umbilical Based on an Approximate Model
,”
Mar. Struct.
,
78
, p.
102995
.
6.
Knapp
,
R. H.
,
1979
, “
Derivation of a New Stiffness Matrix for Helically Armoured Cables Considering Tension and Torsion
,”
Int. J. Numer. Methods Eng.
,
14
(
4
), pp.
515
529
.
7.
Hruska
,
F. H.
,
1952
, “
Radial Forces in Wire Ropes
,”
Wire Wire Prod.
,
27
(
18
), pp.
459
463
.
8.
Hruska
,
F. H.
,
1951
, “
Calculation of Stresses in Wire Ropes
,”
Wire Wire Prod.
,
26
(
32
), pp.
766
767
.
9.
Xiang
,
L.
,
Wang
,
H. Y.
,
Chen
,
Y.
,
Guan
,
Y. J.
,
Wang
,
Y. L.
, and
Dai
,
L. H.
,
2015
, “
Modeling of Multi-strand Wire Ropes Subjected to Axial Tension and Torsion Loads
,”
Int. J. Solids Struct.
,
58
, pp.
233
246
.
10.
Marcelo
,
B.
,
Léa
,
M. B.
,
José
,
R.
, and
de Sousa
,
M.
,
2005
, “
Flexible Riser Resistance Against Combined Axial Compression, Bending, and Torsion in Ultra-deep Water Depths
,”
International Conference on Offshore Mechanics and Arctic Engineering
, ASME Paper No. OMAE2005-67404.
11.
Sævik
,
S.
, and
Thorsen
,
M. J.
,
2017
, “
An Analytical Treatment of Buckling and Instability of Tensile Armors in Flexible Pipes
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
4
), p.
041701
.
12.
Liu
,
M. S.
,
Li
,
J. Y.
,
Chen
,
L. X.
, and
Ju
,
J. S.
,
2019
, “
On the Response and Prediction of Multi-layered Flexible Riser Under Combined Load Conditions
,”
Eng. Comput.
,
36
(
8
), pp.
2507
2529
.
13.
Liu
,
M. S.
,
Liu
,
X. W.
, and
Li
,
J. Y.
,
2017
, “
Numerical Simulation of Flexible Multilayered Pipe/Riser Under Torsion
,”
Strength Mater.
,
49
(
1
), pp.
180
187
.
14.
Panagiotis
,
S. A.
,
Efstathios
,
E. T.
, and
Constantine
,
M.
,
2020
, “
Numerical Analysis of Stress Concentration Factors on Tensile Armour Wires Inside the End-Fitting of an Axially Tensed Unbonded Flexible Pipe
,”
J. Struct. Integr. Maint.
,
5
(
2
), pp.
72
86
.
15.
Dong
,
L.
,
Huang
,
Y.
,
Dong
,
G.
,
Zhang
,
Q.
, and
Liu
,
G.
,
2016
, “
The Tensile Armour Behaviour of Unbonded Flexible Pipes Close to End Fittings Under Axial Tension
,”
Sh. Offshore Struct.
,
11
(
5
), pp.
445
460
.
16.
Zhang
,
M.
,
Chen
,
X.
,
Fu
,
S.
,
Guo
,
Y.
, and
Ma
,
L.
,
2015
, “
Theoretical and Numerical Analysis of Bending Behavior of Unbonded Flexible Riser
,”
Mar. Struct.
,
44
, pp.
311
325
.
17.
Ren
,
S. F.
,
Xue
,
H. X.
, and
Tang
,
W. Y.
,
2016
, “
Analytical and Numerical Models to Predict the Behavior of Unbonded Flexible Risers Under Torsion
,”
Chin. Ocean Eng.
,
30
(
2
), pp.
243
256
.
18.
Gautam
,
M.
,
Katnam
,
K. B.
,
Potluri
,
P.
,
Jha
,
V.
,
Latto
,
J.
, and
Dodds
,
N.
,
2017
, “
Hybrid Composite Tensile Armour Wires in Flexible Risers: A Multi-scale Model
,”
Compos. Struct.
,
162
, pp.
13
27
.
19.
Peuker
,
M.
,
Kokkinowrachos
,
K.
, and
Giese
,
K.
,
1987
, “
Development of Flexible Risers for Floating Offshore Production
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
,
Apr. 27–30
, p.
5469
.
20.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization-Homogenization Theory for Media With Periodic Structure
,”
Compos. Struct.
,
69
(
6
), pp.
739
756
.
21.
Kolpakov
,
A. G.
,
1991
, “
Calculation of the Characteristics of Thin Elastic Rods of Periodic Structure
,”
J. App. Math. Mech.
,
55
(
3
), pp.
440
448
.
22.
Kalamkarov
,
A. L.
, and
Kolpakov
,
A. G.
,
1997
,
Analysis, Design, and Optimization of Composite Structures
,
New York John Wiley & Sons, Ltd.
,
Chichester, West Sussex, England
.
23.
Kolpakov
,
V. G.
,
2004
,
Stressed Composite Structures: Homogenized Models for Thin-Walled Nonhomogeneous Structures With Initial Stresses
,
Springer-Verlag
,
Berlin
, 228.
24.
Cheng
,
G.
,
Cai
,
Y.
, and
Xu
,
L.
,
2013
, “
Novel Implementation of Homogenization Method to Predict Effective Properties of Periodic Materials
,”
Acta Mech. Sin.
,
29
(
4
), pp.
550
556
.
25.
Yi
,
S.
,
Xu
,
L.
,
Cheng
,
G.
, and
Cai
,
Y. W.
,
2015
, “
FEM Formulation of Homogenization Method for Effective Properties of Periodic Heterogeneous Beam and Size Effect of Basic Cell in Thickness Direction
,”
Compos. Struct.
,
156
(
No. C
), pp.
1
11
.
26.
Yan
,
J.
,
Hu
,
H.
,
Yang
,
Z.
,
Wan
,
R.
, and
Li
,
Y.
,
2019
, “
Multi-Scale Analysis for Helically Wound Structures With One-Dimensional Periodicity
,”
Eng. Comput.
,
36
(
8
), pp.
2911
2928
.
27.
DOT
,
January 2001
,
Design Optimization Tools, Version 5.x, Users Manual
,
Vanderplaats Research and Development, Inc.
,
Colorado Springs, CO
.
28.
Liu
,
S. T.
,
Cheng
,
G. D.
,
Gu
,
Y.
, and
Zheng
,
X,G
,
2002
, “
Mapping Method for Sensitivity Analysis of Composite Material Property
,”
Struct. Multidisc. Optim.
,
24
(
3
), pp.
212
217
.
29.
Yi
,
S.
,
Cheng
,
G.
, and
Xu
,
L.
,
2016
, “
Stiffness Design of Heterogeneous Periodic Beam by Topology Optimization With Integration of Commercial Software
,”
Compos. Struct.
,
172
(
No. C
), pp.
71
80
.
30.
Cheng
,
G.
, and
Xu
,
L.
,
2016
, “
Two-Scale Topology Design Optimization of Stiffened or Porous Plate Subject to Out-of-Plane Buckling Constraint
,”
Struct. Multidisc. Optim.
,
54
(
5
), pp.
1283
1296
.
You do not currently have access to this content.