Abstract

Instabilities of deep-water wave trains subject to initially small perturbations (which then grow exponentially) can lead to extreme waves in offshore regions. The present study focuses on the two-dimensional Benjamin–Feir (or modulational) instability and the three-dimensional crescent (or horseshoe) waves, also known as Class I and Class II instabilities, respectively. Numerical studies on Class I and Class II wave instabilities to date have been mostly limited to models founded on potential flow theory; thus, they could only properly investigate the process from initial growth of the perturbations to the initial breaking point. The present study conducts numerical simulations to investigate the generation and development of wave instabilities involving the wave breaking process. A computational fluid dynamics (CFD) model solving Reynolds-averaged Navier–Stokes (RANS) equations coupled with a turbulence closure model in terms of the Reynolds stress model is applied. Wave form evolutions, Fourier amplitudes, and the turbulence beneath the broken waves are investigated.

References

1.
Benjamin
,
T. B.
, and
Feir
,
J.
,
1967
, “
The Disintegration of Wave Trains on Deep Water
,”
J. Fluid Mech.
,
27
(
3
), pp.
417
430
.
2.
McLean
,
J. W.
,
1982
, “
Instabilities of Finite-Amplitude Water Waves
,”
J. Fluid Mech.
,
114
, pp.
315
330
.
3.
Tulin
,
M. P.
, and
Waseda
,
T.
,
1999
, “
Laboratory Observations of Wave Group Evolution, Including Breaking Effects
,”
J. Fluid Mech.
,
378
, pp.
197
232
.
4.
Hwung
,
H.-H.
,
Chiang
,
W.-S.
,
Yang
,
R.-Y.
, and
Shugan
,
I. V.
,
2011
, “
Threshold Model on the Evolution of Stokes Wave Side-Band Instability
,”
Eur. J. Mech. B/Fluids
,
30
(
2
), pp.
147
155
.
5.
Madsen
,
P. A.
,
Bingham
,
H.
, and
Liu
,
H.
,
2002
, “
A New Boussinesq Method for Fully Nonlinear Waves From Shallow to Deep Water
,”
J. Fluid Mech.
,
462
, pp.
1
30
.
6.
Iafrati
,
A.
,
Babanin
,
A.
, and
Onorato
,
M.
,
2013
, “
Modulational Instability, Wave Breaking, and Formation of Large-Scale Dipoles in the Atmosphere
,”
Phys. Rev. Lett.
,
110
(
18
), p.
184504
.
7.
Iafrati
,
A.
,
Babanin
,
A.
, and
Onorato
,
M.
,
2014
, “
Modeling of Ocean-Aatmosphere Interaction Phenomena During the Breaking of Modulated Wave Trains
,”
J. Comput. Phys.
,
271
, pp.
151
171
.
8.
Alberello
,
A.
, and
Iafrati
,
A.
,
2019
, “
The Velocity Field Underneath a Breaking Rogue Wave: Laboratory Experiments Versus Numerical Simulations
,”
Fluids
,
4
(
2
), p.
68
.
9.
De Vita
,
F.
,
Verzicco
,
R.
, and
Iafrati
,
A.
,
2018
, “
Breaking of Modulated Wave Groups: Kinematics and Energy Dissipation Processes
,”
J. Fluid Mech.
,
855
, pp.
267
298
.
10.
Tulin
,
M. P.
,
1996
, “Breaking of Ocean Waves and Downshifting,”
Waves and Nonlinear Processes in Hydrodynamics
, Vol.
34
,
J.
Grue
,
B.
Gjevik
, and
J. E.
Weber
, eds.,
Springer
,
Dordrecht
, pp.
177
190
.
11.
Deike
,
L.
,
Melville
,
W. K.
, and
Popinet
,
S.
,
2016
, “
Air Entrainment and Bubble Statistics in Breaking Waves
,”
J. Fluid Mech.
,
801
, pp.
91
129
.
12.
Xue
,
M.
,
,
H.
,
Liu
,
Y.
, and
Yue
,
D. K.
,
2001
, “
Computations of Fully Nonlinear Three-Dimensional Wave-Wave and Wave-Body Interactions. Part 1. Dynamics of Steep Three-Dimensional Waves
,”
J. Fluid Mech.
,
438
, pp.
11
39
.
13.
Fuhrman
,
D. R.
,
Madsen
,
P. A.
, and
Bingham
,
H. B.
,
2004
, “
A Numerical Study of Crescent Waves
,”
J. Fluid Mech.
,
513
, pp.
309
341
.
14.
Fructus
,
D.
,
Kharif
,
C.
,
Francius
,
M.
,
Kristiansen
,
Ø.
,
Clamond
,
D.
, and
Grue
,
J.
,
2005
, “
Dynamics of Crescent Water Wave Patterns
,”
J. Fluid Mech.
,
537
, pp.
155
186
.
15.
Xu
,
L.
, and
Guyenne
,
P.
,
2009
, “
Numerical Simulation of Three-Dimensional Nonlinear Water Waves
,”
J. Comput. Phys.
,
228
(
22
), pp.
8446
8466
.
16.
Klahn
,
M.
,
Madsen
,
P. A.
, and
Fuhrman
,
D. R.
,
2020
, “
Simulation of Three-Dimensional Nonlinear Water Waves Using a Pseudospectral Volumetric Method With An Artificial Boundary Condition
,”
Int. J. Numer. Methods Fluids
,
93
(
6
), pp.
1843
1870
.
17.
Su
,
M.-Y.
,
1982
, “
Three-Dimensional Deep-water Waves. Part 1. Experimental Measurement of Skew and Symmetric Wave Patterns
,”
J. Fluid Mech.
,
124
, pp.
73
108
.
18.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFOAM®
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
.
19.
Wilcox
,
D.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW industries La Canada
,
CA
.
20.
Li
,
Y.
,
Larsen
,
B. E.
, and
Fuhrman
,
D. R.
,
2021
, “
Reynolds Stress Turbulence Modelling of Surf Zone Breaking Waves
.”
Submitted
.
21.
Brown
,
S.
,
Greaves
,
D.
,
Magar
,
V.
, and
Conley
,
D.
,
2016
, “
Evaluation of Turbulence Closure Models Under Spilling and Plunging Breakers in the Surf Zone
,”
Coast. Eng.
,
114
(
C7
), pp.
177
193
.
22.
Derakhti
,
M.
,
Kirby
,
J. T.
,
Shi
,
F.
, and
Ma
,
G.
,
2016
, “
Wave Breaking in the Surf Zone and Deep-Water in a Non-Hydrostatic RANS Model. Part 2: Turbulence and Mean Circulation
,”
Ocean Model.
,
107
, pp.
139
150
.
23.
Devolder
,
B.
,
Troch
,
P.
, and
Rauwoens
,
P.
,
2018
, “
Performance of a Buoyancy-Modified k-ω and k-ω SST Turbulence Model for Simulating Wave Breaking Under Regular Waves Using OpenFOAM®
,”
Coast. Eng.
,
138
, pp.
49
65
.
24.
Hsu
,
T. J.
,
Sakakiyama
,
T.
, and
Liu
,
P. L.-F.
,
2002
, “
A Numerical Model for Wave Motions and Turbulence Flows in Front of a Composite Breakwater
,”
Coast. Eng.
,
46
(
1
), pp.
25
50
.
25.
Larsen
,
B. E.
, and
Fuhrman
,
D. R.
,
2018
, “
On the Over-Production of Turbulence Beneath Surface Waves in Reynolds-Averaged Navier–Stokes Models
,”
J. Fluid Mech.
,
853
, pp.
419
460
.
26.
Fuhrman
,
D. R.
, and
Li
,
Y.
,
2020
, “
Instability of the Realizable k-ɛ Turbulence Model Beneath Surface Waves
,”
Phys. Fluids
,
32
(
11
), p.
115108
.
27.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
28.
Li
,
Y.
,
Fredberg
,
M. B.
,
Larsen
,
B. E.
, and
Fuhrman
,
D. R.
,
2020
, “
Simulating Breaking Waves with the Reynolds Stress Turbulence Model
,”
Coast. Eng. Proc.
,
36
(
v
), pp.
17
17
.
29.
Su
,
M.-Y.
,
Bergin
,
M.
,
Marler
,
P.
, and
Myrick
,
R.
,
1982
, “
Experiments on Nonlinear Instabilities and Evolution of Steep Gravity-Wave Trains
,”
J. Fluid Mech.
,
124
, pp.
45
72
.
30.
Fenton
,
J.
,
1988
, “
The Numerical Solution of Steady Water Wave Problems
,”
Comput. Geosci.
,
14
(
3
), pp.
357
368
.
31.
Larsen
,
B. E.
,
Fuhrman
,
D. R.
, and
Roenby
,
J.
,
2019
, “
Performance of Interfoam on the Simulation of Progressive Waves
,”
Coast. Eng. J.
,
61
(
3
), pp.
380
400
.
32.
Melville
,
W.
,
1982
, “
The Instability and Breaking of Deep-Water Waves
,”
J. Fluid Mech.
,
115
, pp.
165
185
.
You do not currently have access to this content.