Abstract

Open ocean aquaculture cages became a promising alternative to traditional fish cage designs recently. The offshore environment implies larger loads on the structure and thus higher risk for fish loss. Floating rigid aquaculture cages with stiff nets are considered as a possible solution to cope with these new challenges. Their design process requires more advanced tools to account for the non-linear fluid–structure interaction. This paper presents a suitable numerical approach for analyzing the interaction of offshore aquaculture cages and waves using computational fluid dynamics. Here, a numerical wave tank accounts for the accurate propagation of the waves, and dynamic solutions are utilized for the cage system. Two-way coupling is enabled by accounting for the influence of the net on the fluid. The numerical model is validated against measurements for the loads on and the responses of a mobile floating fish farm in waves and current.

References

1.
Ferreira
,
J.
,
Saurel
,
J.
,
Lencart e Silva
,
J.
,
Nunes
,
J.
, and
Vazquez
,
F.
,
2014
, “
Modelling of Interactions Between Inshore and Offshore Aquaculture
,”
Aquaculture
,
426–427
(
1
), pp.
154
164
.
2.
Chu
,
Y.
,
Wang
,
C.
,
Park
,
J.
, and
Lader
,
P.
,
2020
, “
Review of Cage and Containment Tank Designs for Offshore Fish Farming
,”
Aquaculture
,
519
(
1
), p.
734928
.
3.
Patursson
,
Ø.
,
Swift
,
M. R.
,
Tsukrov
,
I.
,
Simonsen
,
K.
,
Baldwin
,
K.
,
Fredriksson
,
D.
, and
Celikkol
,
B.
,
2010
, “
Development of a Porous Media Model With Application to Flow Through and Around a Net Panel
,”
Ocean Eng.
,
37
(
2–3
), pp.
314
324
.
4.
Bi
,
C.-W.
,
Zhao
,
Y.-P.
,
Dong
,
G.-H.
,
Xu
,
T.-J.
, and
Gui
,
F.-K.
,
2013
, “
Experimental Investigation of the Reduction in Flow Velocity Downstream From a Fishing Net
,”
Aquacult. Eng.
,
57
(
1
), pp.
71
81
.
5.
Føre
,
H.
,
Endresen
,
P.
,
Norvik
,
C.
, and
Lader
,
P.
,
2020
, “
Loads on Net Panels With Different Solidities
,”
ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering
,
Virtual Conference
.
6.
Bi
,
C.-W.
,
Zhao
,
Y.-P.
,
Dong
,
G.-H.
,
Xu
,
T.-J.
, and
Gui
,
F.-K.
,
2014
, “
Numerical Simulation of the Interaction Between Flow and Flexible Nets
,”
J. Fluids Struct.
,
45
(
1
), pp.
180
201
.
7.
Lader
,
P. F.
, and
Enerhaug
,
B.
,
2005
, “
Experimental Investigation of Forces and Geometry of a Net Cage in Uniform Flow
,”
IEEE J. Ocean. Eng.
,
30
(
1
), pp.
79
84
.
8.
Lader
,
P.
,
Jensen
,
A.
,
Sveen
,
J. K.
,
Fredheim
,
A.
,
Enerhaug
,
B.
, and
Fredriksson
,
D.
,
2007
, “
Experimental Investigation of Wave Forces on Net Structures
,”
Appl. Ocean Res.
,
29
(
3
), pp.
112
127
.
9.
Kristiansen
,
T.
, and
Faltinsen
,
O. M.
,
2015
, “
Experimental and Numerical Study of an Aquaculture Net Cage With Floater in Waves and Current
,”
J. Fluids Struct.
,
54
(
1
), pp.
1
26
.
10.
Shen
,
Y.
,
Greco
,
M.
,
Faltinsen
,
O.
, and
Nygaard
,
I.
,
2018
, “
Numerical and Experimental Investigations on Mooring Loads of a Marine Fish Farm in Waves and Current
,”
J. Fluids Struct.
,
79
(
2
), pp.
115
136
.
11.
Fredriksson
,
D.
,
Swift
,
M.
,
Eroshkin
,
O.
,
Tsukrov
,
I.
,
Irish
,
J.
, and
Celikkol
,
B.
,
2005
, “
Moored Fish Cage Dynamics in Waves and Currents
,”
IEEE J. Ocean. Eng.
,
30
(
1
), pp.
28
36
.
12.
Fredriksson
,
D.
,
Swift
,
M.
,
Irish
,
J.
,
Tsukrov
,
I.
, and
Celikkol
,
B.
,
2003
, “
Fish Cage and Mooring System Dynamics Using Physical and Numerical Models With Field Measurements
,”
Aquacult. Eng.
,
27
(
2
), pp.
117
146
.
13.
Li
,
L.
,
Jiang
,
Z.
,
Vangdal Høiland
,
A.
, and
Chen Ong
,
M.
,
2018
, “
Numerical Analysis of a Vessel-Shaped Offshore Fish Farm
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
4
), p.
041201
.
14.
Chen
,
H.
, and
Christensen
,
E.
,
2018
, “
Simulating the Hydrodynamic Response of a Floater Net System in Current and Waves
,”
J. Fluids Struct.
,
79
(
4
), pp.
50
75
.
15.
Chen
,
H.
, and
Christensen
,
E.
,
2016
, “
Investigations on the Porous Resistance Coefficients for Fishing Net Structures
,”
J. Fluids Struct.
,
65
(
1
), pp.
76
107
.
16.
Chen
,
H.
, and
Christensen
,
E.
,
2017
, “
Development of a Numerical Model for Fluid–Structure Interaction Analysis of Flow Through and Around an Aquaculture Net Cage
,”
Ocean Eng.
,
142
(
1
), pp.
597
615
.
17.
Zhao
,
Y.-P.
,
Bi
,
C.-W.
,
Liu
,
Y.-X.
,
Dong
,
G.-H.
, and
Gui
,
F.-K.
,
2014
, “
Numerical Simulation of Interaction Between Waves and Net Panel Using Porous Media Model
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
1
), pp.
116
126
.
18.
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2020
, “
A Lagrangian Approach for the Coupled Simulation of Fixed Net Structures in a Eulerian Fluid Model
,”
J. Fluids Struct.
,
94
(
3
), p.
102962
.
19.
Martin
,
T.
,
Tsarau
,
A.
, and
Bihs
,
H.
,
2020
, “
A Numerical Framework for Modelling the Dynamics of Open Ocean Aquaculture Structures in Viscous Fluids
,”
Appl. Ocean Res.
,
106
(
1
), p.
102410
.
20.
Martin
,
T.
, and
Bihs
,
H.
,
2021
, “
A Non-Linear Implicit Approach for Modelling the Dynamics of Porous Tensile Structures Interacting With Fluids
,”
J. Fluids Struct.
,
100
(
3
), p.
103168
.
21.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.
22.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
209
(
2
), pp.
448
476
.
23.
Osher
,
S.
, and
Sethian
,
J.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
24.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.
25.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
(
2
), pp.
191
208
.
26.
Jiang
,
G.
, and
Peng
,
D.
,
2000
, “
Weighted ENO Schemes for Hamilton Jacobi Equations
,”
SIAM J. Sci. Comput.
,
21
(
6
), pp.
2126
2143
.
27.
Jiang
,
G.
, and
Shu
,
C.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
28.
Timmermans
,
L.
,
Minev
,
P.
, and
Van De Vosse
,
F.
,
1996
, “
An Approximate Projection Scheme for Incompressible Flow Using Spectral Elements
,”
Int. J. Numer. Methods Fluids
,
22
(
1
), pp.
673
688
.
29.
Shu
,
C.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
30.
van der Vorst
,
H.
,
1992
, “
BiCGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Comput.
,
13
(
2
), pp.
631
644
.
31.
Bihs
,
H.
,
Kamath
,
A.
,
Chella
,
M. A.
, and
Pakozdi
,
C.
,
2019
, “
Complex Geometry Handling for a Cartesian Grid Based Solver
,”
MekIT, 17-Ninth National Conference on Computational Mechanics
,
Trondheim, Norway
,
May 11–12
.
32.
Yang
,
L.
,
2018
, “
One-Fluid Formulation for Fluid–Structure Interaction With Free Surface
,”
Comput. Methods Appl. Mech. Eng.
,
332
(
3
), pp.
102
135
.
33.
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2020
, “
Accurate Modeling of the Interaction of Constrained Floating Structures and Complex Free Surfaces Using a New Quasistatic Mooring Model
,”
Int. J. Numer. Methods Fluids
,
93
(
2
), pp.
504
526
.
34.
Fredheim
,
A.
,
2005
, “
Current Forces on Net Structures
,” Ph.D. thesis,
NTNU Trondheim
,
Norway
.
35.
Nordlaks
, https://www.nordlaks.no/havfarm/om-havfarm-prosjektet, Accessed December 21, 2020.
You do not currently have access to this content.