Abstract

Models of cylinders in the oscillatory flow can be found virtually everywhere in the marine industry, such as pump towers experiencing sloshing load in a liquefied natural gas ship liquid tank. However, compared to the problem of a cylinder in the uniform flow, a cylinder in the oscillatory flow is less studied, let alone multiple cylinders. Therefore, we experimentally and numerically studied two identical circular cylinders oscillating in the still water with either a side-by-side or a tandem configuration for a wide range of Keulegan–Carpenter number and Stokes number β. The experimental result shows that the hydrodynamic performance of an oscillating cylinder pair in the still water is greatly altered due to the interference between the multiple structures with different configurations. In specific, compared to the single cylinder case, the drag coefficient is greatly enhanced when two cylinders are placed side-by-side at a small gap ratio, while dual cylinders in a tandem configuration obtain a smaller drag coefficient and oscillating lift coefficient. In order to reveal the detailed flow physics that results in significant fluid forces alternations, the detailed flow visualization is provided by the numerical simulation: the small gap between two cylinders in a side-by-side configuration will result in a strong gap jet that enhances the energy dissipation and increases the drag, while due to the flow blocking effect for two cylinders in a tandem configuration, the drag coefficient decreases.

References

1.
Wang
,
J.-S.
,
Fan
,
D.
, and
Lin
,
K.
,
2020
, “
A Review on Flow-Induced Vibration of Offshore Circular Cylinders
,”
J. Hydrodyn.
,
32
(
3
), pp.
415
440
.
2.
Williamson
,
C.
,
1985
, “
Sinusoidal Flow Relative to Circular Cylinders
,”
J. Fluid Mech.
,
155
, pp.
141
174
.
3.
Fan
,
D.
,
Zhang
,
X.
, and
Triantafyllou
,
M. S.
,
2017
, “
Drag Coefficient Enhancement of Dual Cylinders in Oscillatory Flow
,”
The 27th International Ocean and Polar Engineering Conference
,
San Francisco, CA
,
June 25
, International Society of Offshore and Polar Engineers.
4.
Fan
,
D.
,
2016
, “
Hydrodynamic Performance of Multi-Component Structures in Oscillatory, Flow From Blow-Out Preventer to Dual Cylinder Interference
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
5.
Fan
,
D.
,
Wang
,
Z.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
,
2019
, “
Mapping the Properties of the Vortex-Induced Vibrations of Flexible Cylinders in Uniform Oncoming Flow
,”
J. Fluid Mech.
,
881
, pp.
815
858
.
6.
Yin
,
D.
,
Passano
,
E.
,
Lie
,
H.
,
Grytøyr
,
G.
,
Aronsen
,
K.
,
Tognarelli
,
M.
, and
Kebadze
,
E. B.
,
2019
, “
Experimental and Numerical Study of a Top Tensioned Riser Subjected to Vessel Motion
,”
Ocean Eng.
,
171
, pp.
565
574
.
7.
Chen
,
Y.
,
Fu
,
S.
,
Xu
,
Y.
, and
Fan
,
D.
,
2013
, “
High Order Force Components of a Near-Wall Circular Cylinder Oscillating in Transverse Direction in a Steady Current
,”
Ocean Eng.
,
74
, pp.
37
47
.
8.
Zhao
,
M.
, and
Cheng
,
L.
,
2014
, “
Two-Dimensional Numerical Study of Vortex Shedding Regimes of Oscillatory Flow Past Two Circular Cylinders in Side-by-Side and Tandem Arrangements at Low Reynolds Numbers
,”
J. Fluid Mech.
,
751
, pp.
1
37
.
9.
Wu
,
C.
,
Kinnas
,
S. A.
,
Li
,
Z.
, and
Wu
,
Y.
,
2019
, “
A Conservative Viscous Vorticity Method for Unsteady Unidirectional and Oscillatory Flow Past a Circular Cylinder
,”
Ocean Eng.
,
191
, p.
106504
.
10.
Wang
,
C.-Y.
,
1968
, “
On High-Frequency Oscillatory Viscous Flows
,”
J. Fluid Mech.
,
32
(
1
), pp.
55
68
.
11.
Bearman
,
P.
,
Downie
,
M.
,
Graham
,
J.
, and
Obasaju
,
E.
,
1985
, “
Forces on Cylinders in Viscous Oscillatory Flow at Low Keulegan–Carpenter Numbers
,”
J. Fluid Mech.
,
154
, pp.
337
356
.
12.
Sarpkaya
,
T.
,
1986
, “
Force on a Circular Cylinder in Viscous Oscillatory Flow at Low Keulegan–Carpenter Numbers
,”
J. Fluid Mech.
,
165
, pp.
61
71
.
13.
Tatsuno
,
M.
, and
Bearman
,
P.
,
1990
, “
A Visual Study of the Flow Around an Oscillating Circular Cylinder at Low Keulegan–Carpenter Numbers and Low Stokes Numbers
,”
J. Fluid Mech.
,
211
, pp.
157
182
.
14.
Lin
,
X.
,
Bearman
,
P.
, and
Graham
,
J.
,
1996
, “
A Numerical Study of Oscillatory Flow About a Circular Cylinder for Low Values of Beta Parameter
,”
J. Fluids Struct.
,
10
(
5
), pp.
501
526
.
15.
Dütsch
,
H.
,
Durst
,
F.
,
Becker
,
S.
, and
Lienhart
,
H.
,
1998
, “
Low-Reynolds-Number Flow Around an Oscillating Circular Cylinder at Low Keulegan–Carpenter Numbers
,”
J. Fluid Mech.
,
360
, pp.
249
271
.
16.
Nehari
,
D.
,
Armenio
,
V.
, and
Ballio
,
F.
,
2004
, “
Three-Dimensional Analysis of the Unidirectional Oscillatory Flow Around a Circular Cylinder at Low Keulegan–Carpenter and β Numbers
,”
J. Fluid Mech.
,
520
, pp.
157
186
.
17.
An
,
H.
,
Cheng
,
L.
, and
Zhao
,
M.
,
2015
, “
Two-Dimensional and Three-Dimensional Simulations of Oscillatory Flow Around a Circular Cylinder
,”
Ocean Eng.
,
109
, pp.
270
286
.
18.
Wu
,
B.
,
Le Garrec
,
J.
,
Fan
,
D.
, and
Triantafyllou
,
M. S.
,
2017
, “
Kill Line Model Cross Flow Inline Coupled Vortex-Induced Vibration
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Trondheim, Norway
,
June 25
, Vol. 57649, American Society of Mechanical Engineers, p. V002T08A010.
19.
Tong
,
F.
,
Cheng
,
L.
,
Xiong
,
C.
,
Draper
,
S.
,
An
,
H.
, and
Lou
,
X.
,
2017
, “
Flow Regimes for a Square Cross-Section Cylinder in Oscillatory Flow
,”
J. Fluid Mech.
,
813
, pp.
85
109
.
20.
Senga
,
H.
, and
Larsen
,
C. M.
,
2017
, “
Forced Motion Experiments Using Cylinders With Helical Strakes
,”
J. Fluids Struct.
,
68
, pp.
279
294
.
21.
Chen
,
W.
,
Ji
,
C.
,
Alam
,
M. M.
,
Williams
,
J.
, and
Xu
,
D.
,
2020
, “
Numerical Simulations of Flow Past Three Circular Cylinders in Equilateral-Triangular Arrangements
,”
J. Fluid Mech.
,
891
, p.
14
.
22.
Lin
,
K.
,
Fan
,
D.
, and
Wang
,
J.
,
2020
, “
Dynamic Response and Hydrodynamic Coefficients of a Cylinder Oscillating in Crossflow With an Upstream Wake Interference
,”
Ocean Eng.
,
209
, p.
107520
.
23.
Pearcey
,
T.
,
Zhao
,
M.
,
Xiang
,
Y.
, and
Liu
,
M.
,
2017
, “
Vibration of Two Elastically Mounted Cylinders of Different Diameters in Oscillatory Flow
,”
Appl. Ocean Res.
,
69
, pp.
173
190
.
24.
Williamson
,
C.
,
1985
, “
Fluid Forces on a Small Cylinder in the Presence of a Large Cylinder in Relative Oscillatory Flow
,”
Appl. Ocean Res.
,
7
(
3
), pp.
124
127
.
25.
Chern
,
M.-J.
,
Kanna
,
P. R.
,
Lu
,
Y.-J.
,
Cheng
,
I.-C.
, and
Chang
,
S.-C.
,
2010
, “
A CFD Study of the Interaction of Oscillatory Flows With a Pair of Side-by-Side Cylinders
,”
J. Fluids Struct.
,
26
(
4
), pp.
626
643
.
26.
Tong
,
F.
,
Cheng
,
L.
,
Zhao
,
M.
, and
An
,
H.
,
2015
, “
Oscillatory Flow Regimes Around Four Cylinders in a Square Arrangement Under Small KC and Re Conditions
,”
J. Fluid Mech.
,
769
, pp.
298
336
.
27.
Fan
,
D.
,
Jodin
,
G.
,
Consi
,
T.
,
Bonfiglio
,
L.
,
Ma
,
Y.
,
Keyes
,
L.
,
Karniadakis
,
G. E.
, and
Triantafyllou
,
M. S.
,
2019
, “
A Robotic Intelligent Towing Tank for Learning Complex Fluid–Structure Dynamics
,”
Sci. Rob.
,
4
(
36
), p.
5036
.
28.
Zhang
,
X.
,
Fan
,
D.
, and
Wan
,
D.
,
2017
, “
Numerical Study of Oscillatory Dual Cylinders in Tandem Arrangement
,”
The 27th International Ocean and Polar Engineering Conference
,
San Francisco, CA
,
June 25
.
29.
Morison
,
J.
,
Johnson
,
J.
, and
Schaaf
,
S.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Petrol. Technol.
,
2
(
5
), pp.
149
154
.
30.
Weymouth
,
G. D.
, and
Yue
,
D. K.
,
2011
, “
Boundary Data Immersion Method for Cartesian-Grid Simulations of Fluid-Body Interaction Problems
,”
J. Comput. Phys.
,
230
(
16
), pp.
6233
6247
.
31.
Fan
,
D.
,
Yang
,
L.
,
Wang
,
Z.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
,
2020
, “
Reinforcement Learning for Bluff Body Active Flow Control in Experiments and Simulations
,”
Proc. Natl. Acad. Sci. U.S.A.
,
117
(
42
), pp.
26091
26098
.
32.
Zhao
,
M.
,
Cheng
,
L.
, and
Zhou
,
T.
,
2011
, “
Three-Dimensional Numerical Simulation of Oscillatory Flow Around a Circular Cylinder at Right and Oblique Attacks
,”
Ocean Eng.
,
38
(
17–18
), pp.
2056
2069
.
33.
Williamson
,
C. H.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
.
34.
Uzunoğlu
,
B.
,
Tan
,
M.
, and
Price
,
W.
,
2001
, “
Low-Reynolds-Number Flow Around an Oscillating Circular Cylinder Using a Cell Viscousboundary Element Method
,”
Int. J. Numer. Methods Eng.
,
50
(
10
), pp.
2317
2338
.
You do not currently have access to this content.